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Abstract. The design and the debugging of large-scale MAS require
abstraction tools in order to work at a macroscopic level of descrip-
tion. Agent aggregation provides such abstractions by reducing the com-
plexity of the system’s microscopic representation. Since it leads to an
information loss, such a key process may be extremely harmful for the
analysis if poorly executed. This paper presents measures inherited from
information theory to evaluate abstractions and to provide the experts
with feedback regarding the quality of generated representations. Several
evaluation techniques are applied to the spatial and temporal aggrega-
tion of an agent-based model of international relations. The information
from on-line newspapers constitutes a complex microscopic representa-
tion of the agent states. Our approach is able to evaluate geographical
abstractions used by the domain experts in order to provide efficient and
meaningful macroscopic representations of the world global state.

Keywords: Large-scale MAS · Agent aggregation · Macroscopic
representation · Information theory · Geographical and news analysis

1 Introduction

Because of their increasing size, complexity, and concurrency, current multi-agent
systems (MAS) can no longer be understood from a microscopic point of view.
Design, debugging and optimization of such large-scale distributed applications
require tools that proceed at a higher representational level by providing insight-
ful abstractions regarding the system’s dynamics. Among abstraction techniques
(e.g., dimension reduction, subsetting, segmentation, clustering [1]), this paper
focuses on data aggregation. It consists in losing some information regarding the
agent level to build simpler – yet meaningful – macroscopic representations.

Such a process is not trivial for the interpretation of the data by the observer.
In particular, unsound aggregations may lead to critical misrepresentations of the
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MAS behavior. Hence, one needs to determine what are the good abstractions
and how to properly use them. At each stage of MAS development, aggrega-
tion processes should be carefully monitored and feedback should be provided
regarding the quality of the generated macroscopic representations. A simple
example can demonstrate how critical the aggregation process can be. Figure 1
shows two groups of agents that are simplified by two abstract entities with
an averaged behavior. Intuitively, group A constitutes a good abstraction since
the induced global behavior is relatively similar to the microscopic one, unlike
group B. Hence, in order to scale-up, aggregation of redundant information
should be encouraged to reduce the representation complexity (group A), but
details regarding heterogeneous behaviors should be preserved in order to control
the information loss and proceed to a sound analysis (group B).

Very little work has been done in the MAS community to quantify such
aggregation properties. The main contribution of this paper consists in intro-
ducing measures from information theory (Kullback-Leibler (KL) divergence [2]
and Shannon entropy [3]) to clarify the notion of good aggregation. From these
measures, we provide generic feedback techniques and an algorithm that builds
multiresolution representations out of hierarchically organized MAS. These tech-
niques and algorithms are applied to the agent-based modeling of international
relations: agents represent countries, and their behavior is extracted from on-line
newspapers. Geographers exploit multilevel aggregates to build statistics regard-
ing world areas. We show how these geographical abstractions should be used to
better understand the system states and its evolution through time.

Section 2 presents the work related to the main concern of this article. Section 3
presents the agent-based model of the ANR CORPUS GEOMEDIA application.
Sections 4 and 5 introduce KL divergence and the size of representations to respec-
tively estimate information loss and complexity reduction. Section 6 shows how
these measures can be combined to identify optimal aggregations and to build
multiresolution representations of hierarchically organized MAS. Section 7 applies

Fig. 1. Averaging the behavior of groups of agents may reduce the redundant infor-
mation (group A) or lead to an undesired information loss (group B)
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these aggregation techniques to the time dimension in order to provide macro-
scopic representations of the system’s dynamics.

2 Related Work

Aggregation can take place in every stage of the MAS development: from its
design to its use. Even if abstraction techniques may differ, each stage should
carefully take into consideration the quality of the provided aggregations. First,
from a software perspective, this section shows that very few research efforts
have been done to tackle this issue. (1) Most classical simulation platforms and
monitoring systems do not even provide the user with abstraction tools; (2) some
do handle the issue, but are still at an early stage of thought. Secondly, on a theo-
retical aspect, this section explains why classical techniques (e.g. data clustering,
graph analysis) are not entirely satisfying to build consistent abstractions.

In a comprehensive survey of agent-based simulation platforms [4], Railsback
et al. evaluate some tools by testing classical features of MAS modeling and
analysis. Unfortunately, the abstraction problem is not tackled by this survey,
thus indicating that such considerations are seldom if ever taken into account.
Most platforms (Java Swarm, Repast, MASON, NetLogo and Objective-C
Swarm) are limited to the microscopic simulation of agents. Railsback warns
about the lack of “a complete tool for statistical output” in these platforms [4].
The provision of global views on the MAS macroscopic behavior thus constitutes
an on-going research topic. Some tools for large-scale MAS monitoring however
address this issue. For example, in some debugging systems, abstractions are
used to reduce the information complexity of execution traces; however, they
are either limited to the simplification of agents internal behavior, and do not
tackled multi-agent organizational patterns [5], or they are provided without any
feedback regarding their quality for the analysis [6,7].

Some techniques from graph analysis and data clustering build groups of
agents out of their microscopic properties (see for example [8–10]). Such con-
siderations may meet ours from a theoretical point of view, but the approach
presented in this report supports a very different philosophy: abstractions should
be built regarding some macroscopic semantics. We claim that, to be meaning-
ful, the aggregation process needs to rely on exogenous high-level abstractions
defined by the experts. Hence, our approach should rather be related to studies
on multilevel agent-based models [11]. These works openly tackle the abstrac-
tion problem by designing MAS at several organizational levels according to the
expert definitions. Such approaches aim at reducing the computational cost of
simulations depending on the expected level of detail. The algorithm and mea-
sures presented in this paper may provide a formal and quantitative framework
to such researches.

To conclude, aggregation techniques should be more systematically imple-
mented on MAS platforms in order to handle large-scale systems. They should
combine consistent macroscopic semantics from the experts and feedback regard-
ing the abstractions quality. In this paper, abstractions used by geographers are
evaluated according to their information content.



4 R. Lamarche-Perrin et al.

3 Agent-Based Modeling of International Relations

This section presents the GEOMEDIA agent-based model. It consists in the
microscopic representation of countries by agents and the macroscopic represen-
tation of world geographical areas by groups of agents and by organizations.

3.1 Microscopic Data: The Agent Level

Let A be a set of agents constituting the MAS microscopic level. Visualiza-
tion tools aim at displaying and explaining the properties of these agents: their
behavior and internal states, the events they are associated with, the messages
they exchange, and so on. Given a variable v that expresses such properties, the
set of values {v(a)}a∈A constitutes the microscopic representation of the system
(illustrated by distribution P in Fig. 1).

The ANR CORPUS GEOMEDIA project1 is interested in the analysis of
world international relations through a media point of view. This project is
conducted in collaboration with geographers and media experts from the CIST
(Collège International des Sciences du Territoire, Paris). In that context, we
make the assumption that citations or co-citations of countries, within news,
are good indicators to represent and understand their political, economical and
cultural relations. For example, we may assume that an often-cited country is
likely to politically interact with the newspaper country. Our agent-based model
has two dimensions:

– The agents of the model represent the |A| = 193 United Nation member
states, selected by geographers depending on their significance for the analysis
of international relations.

– The temporal dimension contains |T | = 90 weeks, from the 3rd of May 2011
to the 20th of January 2013. This preliminary aggregation to the week level
aims at reducing the chaotic variations of the day level and focusing on the
more significant variations related to media events.

The experiments presented in this paper focus on a very basic variable: the
number of articles that cite a country during a given time period. We use
the 59,234 articles published by the “world” RSS flow of The Guardian2 during
the analyzed period and stored in the GEOMEDIA database. For each article,
we look for the occurrences of the country names, the country adjectives, and the
inhabitants names (e.g., “Spain”, “Spanish”, and “Spaniard(s)” for the Spain
agent). Thus, for each agent a and time period t, we count the number of articles
v(a, t) that “cite a during t”. A total of 138,811 citations have been found within
the dataset, distributed within 77% of the articles (3 citations/article in average
if we set aside the 23 % that contain no citation at all).

1 Founded by the French National Agency for Research (ANR-GUI-AAP-04). See the
dedicated website for details: http://geomedia.hypotheses.org/.

2 http://www.theguardian.com/world

http://geomedia.hypotheses.org/
http://www.theguardian.com/world
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In order to spot critical aspects of the international systems, geographers are
interested in detecting significant events in the news. Such events correspond
to unexpected values of the variable according to the following hypothesis: the
citation numbers of countries are homogeneous through time. In that sense, the
marginal values of the dataset give the expected citation number. For an agent a
and a time period t, we thus expect the observed value v(a, t) to be close to:

v∗(a, t) =
v(a, T ) v(A, t)

v(A, T )

where v(a, T ) is the citation number of agent a during the whole observation
period T ; v(A, t) is the total number of citations, regarding all agents in A,
during the time period t; and v(A, T ) is the total number of citations within
the dataset. A media event thus correspond to a high observed value v(a, t)
compared to the expected value v∗(a, t).

Observed−to−expected ratio
 of citation number

2.9 to 3.7 times more cited

2.2 to 2.9 times more cited

1.7 to 2.2 times more cited

1.3 to 1.7 times more cited

1.3 times less to 1.3 times more cited

1.3 to 1.7 times less cited

1.7 to 2.2 times less cited

2.2 to 2.9 times less cited

2.9 to 3.7 times less cited

Fig. 2. Observed-to-expected ratio of countries citation within the articles published
by The Guardian during the month of July 2011 (red circles indicate media events)
(Color figure online)
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Figure 2 above displays the observed-to-expected ratio of citation number
v(a, t)/v∗(a, t) for each country a ∈ A during t = “the month of July 2011”.
A detailed survey of this map allows to identify geographical areas that have
been unexpectedly over-cited during this time period: at the national level (e.g.,
Norway, Djibouti, Guinea-Bissau) and at higher levels, i.e. for groups of countries
(e.g., Europe, Horn of Africa). However, the quantity of information displayed
in such a microscopic representation makes it quite hard to read. In particular,
the visual clutter in dense areas prevents the proper interpretation of data. To
overcome this difficulty, Figs. 3 and 4 propose to focus on areas of particular
interest (resp. Europe and Africa). In the following sections, we will focus on
two particular events that occurred in these geographical areas:

1. The observed citation number of the Norway agent is 3.7 times higher than
expected (see Fig. 3). This is explained by the terrorist attacks that occurred
in Norway the 22th of July 20113. This event belongs to the national level and
thus constitutes a microscopic event within the system’s spatial dimension.

2. Countries of the Horn of Africa also present unexpected citation numbers
(from 1.9 times to 3.4 times the expected value for Rwanda, Sudan, Somalia,
Ethiopia and Djibouti, see Fig. 4). This is explained by the food crisis that

Observed−to−expected ratio
 of citation number

2.9 to 3.7 times more cited

2.2 to 2.9 times more cited

1.7 to 2.2 times more cited

1.3 to 1.7 times more cited

1.3 times less to 1.3 times more cited

1.3 to 1.7 times less cited

1.7 to 2.2 times less cited

2.2 to 2.9 times less cited

2.9 to 3.7 times less cited

Fig. 3. Observed-to-expected ratio of citation number (zoom on European countries
with a national event detected in the Norway agent)

3 http://en.wikipedia.org/wiki/2011 Norway attacks

http://en.wikipedia.org/wiki/2011_Norway_attacks
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Fig. 4. Observed-to-expected ratio of citation number (zoom on African countries with
an international event detected in the Horn of Africa group of agents)

has been reported in this world area starting from the beginning of July 20114.
Unlike the previous one, this event is not located at the national level, but
regards a group of agents located in a spatially spread out area.

3.2 Macroscopic Data: Groups and Organizations

Even if the maps in Figs. 3 and 4 allow to easily spot the two events we are
interested in, they do not manage to give the global overview of the world-wide
system that is necessary for an informed analysis. Data aggregation aims at
resuming the microscopic information to provide such an overview.

A group G ⊂ A is subset of agents that are members of a consistent orga-
nizational pattern. It can be interpreted as an abstract entity that sums up the
behavior of its underlying agents. Hence, groups satisfy a recursive definition:
a group is either an agent or a set of groups. Quantitative variables express-
ing agents properties may be extended on groups according to an aggregation
operator: e.g., sum, mean, median, extrema [1]. In our case, since we work with
extensive variables, i.e. variables that are proportional to the aggregate size,
v(G, t) is defined as the sum of the values of the underlying agents (see distrib-
ution Q′ in Fig. 1):
4 http://en.wikipedia.org/wiki/2011 East Africa drought

http://en.wikipedia.org/wiki/2011_East_Africa_drought
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v(G, t) =
∑

a∈G

v(a, t)

We define an organization O as a set of groups that constitutes a partition of
the agent set A. Thus, in the scope of this paper, each agent is always a member
of one and only one group. The set of group values {v(G, t)}G∈O composes a
macroscopic representation of the system with respect to a given organization. It
simplifies the variable distribution, from the detailed microscopic representation
(distribution P in Fig. 1) to an aggregated one (distribution Q′).

Observed−to−expected ratio
 of citation number

2.9 to 3.7 times more cited

2.2 to 2.9 times more cited

1.7 to 2.2 times more cited

1.3 to 1.7 times more cited

1.3 times less to 1.3 times more cited

1.3 to 1.7 times less cited

1.7 to 2.2 times less cited

2.2 to 2.9 times less cited

2.9 to 3.7 times less cited

Fig. 5. Observed-to-expected ratio of citation number for the groups of agents defined
by the 3rd level of the WUTS hierarchical organization

In order to be consistent with the observer’s background knowledge, groups
and organizations should be derived from the structural and semantical proper-
ties of the agent space. In our context, the world’s social, political, and economic
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organization is used by geographers to represent and explain the data. Moreover,
in this paper, we also focus on the world’s topological organization in order to be
consistent with classic geographical representations. Groups thus aggregate adja-
cent territories that share a cultural and historical background. In the following
experiments, we consider two hierarchical organizations of countries that meet
these needs, namely WUTS [12] and UNEP [13]. Such organizations define multilevel
nested groups commonly used by geographers to build global statistics regarding
world areas, from the microscopic level of agents to the full aggregation (see [12]
for a detailed presentation of these multiscale organizations).

As an example, Fig. 5 provides with the observed-to-expected ratio of cita-
tion numbers aggregated according to WUTS 3, the 3rd level of the WUTS hierarchy.
Because of the data reduction, this map is much easier to analyze than the micro-
scopic one (see Fig. 2). In particular, the food crisis that occurred in the Horn
of Africa group of agents is resumed by one observed macroscopic value that
is globally 1.8 times higher than the expected citation number. In that case, the
aggregation macroscopically represents the corresponding event. However, most
of the microscopic variations have been suppressed by the aggregation process:
for example, the events that occurred in the Norway agent are no longer rep-
resented. We thus need to control the aggregation process in order to visualize
events at different levels depending on their spatial granularity. The following
sections present an aggregation technique to automatically build such multires-
olution representations of MAS.

4 KL Divergence as a Measure of Organization Quality

When an observer tries to interpret the data that is contained in a macroscopic
representation, she necessarily makes an assumption regarding the distribution
of the aggregated values over the underlying agents. For example, in Fig. 1,
the observer considers that each agent has the same weight in the group. It is
thus underlined that aggregated values are uniformly distributed over the agents
(from Q′ to Q). Consequently, some groups are more suitable than others to
summarize the microscopic information: using group A seems relevant since P
is close to Q, unlike group B. Hence, organizations should be carefully chosen in
order to provide accurate abstractions. In particular, they should only aggregate
homogeneous and redundant distributions of the displayed variable.

Among classical similarity measures to compare a source distribution P with
a model distribution Q, Kullback-Leibler (KL) divergence is of highest interest
because of its interpretation in terms of information content. This section shows
how it can be exploited to provide feedback regarding the quality of groups and
organizations and to ensure their proper interpretation by the observer.

4.1 Formalization and Semantics of KL Divergence

Formally, KL divergence measures the number of bits of information that one
loses by using the model distribution Q to find the optimal binary coding of
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countries associated to articles, instead of using the source distribution P [2].
In other words, KL divergence estimates the information that is lost by the
aggregation process. But more generally, it is a measure of dissimilarity between
two probability distributions. Hence, it can be interpreted as a fitness function
between a source P and a model Q.

In our case, the “uniform hypothesis” is not suitable to interpret an aggre-
gated representation. Indeed, for a given group, countries do not have the same
weight regarding citation number. For example, the observer may assume that,
within the Northern America group, the USA agent usually accumulates much
more citations than the Canada and the Mexico agents. The aggregated value
should thus be interpreted depending on that fact. The marginal values can be
used to interpret an aggregated representation Q′ and to give the corresponding
model Q: the citations associated to a group of agents during a time period
are distributed according to the total citation numbers of the underlying agents
over the whole dataset. Given an agent a in a group G and a time period t, the
interpreted citation number is thus given by the following formula:

Q(a, t) = v(G, t)
v(a, T )
v(G,T )

This interpreted value is then compared to the observed microscopic value:
P (a, t) = v(a, t). From the KL formula in [2], we define the divergence of a
group G (or information loss, in bits) as follows:

loss(G, t) =
∑

a∈G

P (a, t) log2

(
P (a, t)
Q(a, t)

)

=
∑

a∈G

v(a, t) log2

(
v(a, t) v(G,T )
v(G, t) v(a, T )

)

As we assume that aggregated values are thus distributed among underlying
agents, a group whose internal distribution is very close to the observed dis-
tribution (as group A in Fig. 1) will have a low divergence, and conversely (as
group B). Moreover, KL divergence verifies the sum property [14], meaning that
the divergence of disjoint groups is the sum of their divergences. Therefore, for
an organization O, we have:

loss(O, t) =
∑

G∈O

loss(G, t)

4.2 Divergence is Correlated with the Source of Information

This first experiment aims at showing an essential feature of the aggregation
process: its quality depends on the context of the analysis. Figure 6 presents the
KL divergence of groups defined by the WUTS 3 macroscopic organization for two
different newspapers (The Guardian and The New York Times) that have been
observed during the month of July 2011. The darker a group is, the higher its
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KL divergence is, the more heterogeneous its internal distribution is. Such groups
should not be used for aggregation since they induce a misleading interpretation
of the data. In this case, the real microscopic representation significantly diverges
from the macroscopic model, making these groups unsuitable for the analysis. On
the contrary, bright groups of countries constitutes good abstractions in terms of
information content. The aggregated representation they provide regarding the
corresponding geographical area fits with the microscopic data and can thus be
properly interpreted by the observer.

In the case of The Guardian (cf. Fig. 6(a)), the groups with a high diver-
gence are the location of microscopic events that can be spotted in Fig. 2. In
these cases, the suppression of the corresponding microscopic variations induces
a significant information loss. Divergence thus indicates heterogeneous behav-
iors in lower levels that should be detailed in order to reveal significant micro-
scopic events. In the case of the The New York Times (cf. Fig. 6(b)), the WUTS 3
groups have not the same divergence than in the previous case. First, divergence
is globally higher, thus indicating a more heterogeneous microscopic behavior.
This newspaper should then be analyzed at a lower level of representation than
The Guardian. Moreover, events are not reported in the same way, or with the
same intensity, depending on the newspaper editorial policies.

(a) The Guardian (UK) (b) The New York Times (USA)

Fig. 6. Spatial variations of the KL divergence for groups of the WUTS 3 organization
(the darker, the higher)

We do not aim at making explicit the various positive and negative factors
explaining the citation number (e.g., geographical, cultural, historical factors
[15,16]), but at showing that groups should be chosen with respect to the dataset.
In our case, this is partly correlated with the source of the information. As a
consequence, if an analyst uses distributed probes to observe a MAS, she does
not want to use only one abstraction pattern to summarize the information.
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This is consistent with the subjectivist account of emergence, according to which
emergent phenomena strongly rely on the observation process [17].

4.3 Divergence of Groups Varies Over Time

Figure 7 presents the time variation of the KL divergence (thick red line) of the
Northern America group (compounded of the USA, the Canada and the Mexico
agents). Each value has been computed at the week level, by comparing the
interpreted and the observed citation numbers for the countries of this group.
The graph shows that a group with a globally low divergence through time
can nonetheless be the source of significant information losses during specific
time periods For example, the highest peak which appears in October 2012 is
explained by the US presidential elections: during this time period, the USA
agent accumulated much more citations than usually, whereas the Canada and
the Mexico agents did not. Consequently, the use of the Northern America
group to represent events led to a massive information loss. As a result, the
choice of the representation level should also fit with the analyzed time period.

Moreover, the graph in Fig. 7 shows that the divergence variations are not
strictly correlated with the variations of the analyzed variable (dashed blue
line): an increasing of the observed-to-expected ratio of citation number does
not implies an increasing of the divergence, and conversely. Hence, the citation
number is not a sufficient criterion to evaluate the information content of orga-
nizations, by contrast with divergence.
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Fig. 7. Time variation of the KL Divergence and the observed-to-expected ratio of
citation number of the Northern America group for The Guardian (Color figure online)

4.4 Divergence is Correlated with the Shape of Groups

The purpose of this third experiment is to compare two mesoscopic agent orga-
nizations: WUTS 2 and UNEP reg (see Fig. 8). First, a global comparison indicates
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which organization minimizes the KL divergence. In order to compare the results
from different newspapers, the information loss induced by organizations is nor-
malized by the total citation number of the corresponding newspaper (in the
following array, “b/c” stands for “bits/citation”):

The Vancouver Sun The Daily Mail The Ph. Daily Inquirer

WUTS 2 1.80 b/c 1.46 b/c 2.07 b/c

UNEP reg 1.57 b/c 1.51 b/c 2.26 b/c

It appears that, both for The Daily Mail and The Philippine Daily Inquirer,
divergence is slightly lower for the WUTS 2 organization than for the UNEP reg
organization. Hence, if one should choose between these two, WUTS 2 should be
preferred. However, for The Vancouver Sun, UNEP reg is better. Once again,
abstractions should then be chosen with respect to the source of information.

We can perform a more subtle analysis in order to determine the groups
optimal shape. For example, we notice in Fig. 8 that U22 = W22 ∪ Mexico and
W21 = U21 ∪ Mexico. Hence, one may ask “what is the best location of the Mexico
agent?” Should it be aggregated with the Northern America group (W21/U21)
or with the Latin America group (W22/U22)? For The Daily Mail, we have:

loss(W21) + loss(W22) = 0.048 b/c < 0.055 b/c = loss(U21) + loss(U22)

Therefore, the observed-to-expected ratio of citation number of the Mexico agent
is closer to those of the Northern America group. Mexico should be aggregated
accordingly. This technique allows to evaluate the geographical abstractions used
by the experts in terms of information content and to choose their optimal shape
for the macroscopic analysis of a given dataset.

W11

W12

W13

W21

W22

W3

(a) The WUTS 2 organization

U11

U12

U13

U21

U22

U3

(b) The UNEP reg organization

Fig. 8. Two organizations of the agent space in six similar (but not equivalent) groups:
locations of the Northern Africa, the Western Asia and the Mexico subgroups differ
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5 The Complexity Reduction Induced by the Aggregation

The information content is never increased by the aggregation process: for any
pair of disjoint groups, we have: loss(G1 ∪ G2) ≥ loss(G1) + loss(G2). Hence, if
we only rely on KL divergence, the more detailed representation is always the
best one. This is why we need a measure that also expresses what one gains by
aggregating the microscopic data. To do so, this section presents two measures
of complexity reduction. They estimate the information quantity that one saves
by encoding a group G rather than its underlying agents:

gain(G) =

(
∑

a∈G

Q(a)

)
− Q(G)

where Q estimates the quantity of information needed to represent the agent a
or the group G.

5.1 Number of Encoded Values

One way of measuring information quantities consists in estimating the number
of bits needed to encode the values of a given representation. We may assume
that it is constant for each agent or group: Q(a) = Q(G) = q, where q depends
on the data type of the encoded values. Hence, for a group G, we have:

gain(G) = (|G| − 1) × q

This function gives a basic complexity measure that fits well with classic
visualization techniques (as for the maps in this paper) since the number of dis-
played values defines the granularity of the visualization. For example, according
to the map expected complexity, the user can determine the number of groups
that should be displayed. Figure 9 gives the organization size (number of groups)
and the associated gain of each organizational level of the WUTS hierarchy.

Organization |O| gain(O)/q
WUTS 0 1 192
WUTS 1 3 190
WUTS 2 7 186
WUTS 3 17 176
WUTS 4 36 157
WUTS 5 193 0

Fig. 9. Number of encoded values and complexity reduction of the six organizational
levels of the WUTS hierarchy

However, all groups do not contain the same number of agents. Thus, Fig. 10
gives, for each level of the WUTS hierarchy, the size (number of agents) of three dis-
joint high-level groups of countries: Euro-Africa, Americas and Asia-Pacific.
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Fig. 10. Number of encoded values associated to the three groups of the WUTS 1 level

The user may want to adapt the representational level of these three groups
depending on the amount of detail she expects for the corresponding geographi-
cal areas. The following section presents a criterion that automatically combines
KL divergence and complexity reduction to adapt the size of groups depending
on their quality, thus leading to multiresolution organizations.

5.2 Shannon Entropy

The number of encoded values only depends on the groups partitioning proposed
by a given organization. In contrast, Shannon entropy also depends on the vari-
able distribution. It is a classical complexity measure that is consistent with
KL divergence (it can be defined as “the divergence from the uniform distribu-
tion”). Briefly, entropy evaluates the quantity of information needed to encode
the countries associated to each citation (and not to encode the citation number
associated to each agent). Based on Shannon’s formula [3], we define the entropy
reduction (or gain, in bits) of a group G as follows:

gain(G, t) = v(G, t) log2 v(G, t) −
∑

a∈G

v(a, t) log2 v(a, t)

The choice of either one of these two complexity measures depends on the
performed analysis. Shannon entropy should rather be used for the visualization
of individuated citations, whereas the number of encoded values is more con-
sistent with the visualization of aggregated values. In any case, the techniques
presented in this paper are meant to be generic. They can be used with any com-
plexity measure as long as it fits with some basic algebraic properties (see [18]
for details).
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6 Multiresolution Representation of Spatial Systems

As a conclusion to previous sections, finding a good organization relies on two
aspects: complexity reduction (or gain), quantifying the granularity of the macro-
scopic representation, and KL divergence (or loss), quantifying the amount of
information that has been lost during the aggregation process. Choosing an
organization thus consists in finding a compromise between these two aspects.

6.1 Parametrized Information Criterion

We define a parametrized Information Criterion to express the trade-off between
complexity reduction and information loss of a group G:

pIC(G, t) = p × gain(G, t)
gain(A, t)

− (1 − p) × loss(G, t)
loss(A, t)

where p ∈ [0, 1] is a parameter used to balance the trade-off. For p = 0, maxi-
mizing the pIC is equivalent to minimizing the loss: the observer wants to be as
precise as possible (microscopic level). For p = 1, she wants to be as simple as
possible (full aggregation). When p varies from 0 to 1, a whole class of nested
organizations arises. The observer has to choose the ones that fulfill her require-
ments, between the expected amount of details and the computational resources
available for the analysis.
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Fig. 11. Comparison of the ratio of information loss and the ratio of complexity reduc-
tion (logarithmic scales) for the groups of the WUTS hierarchy applied to the spatial
data presented in Fig. 2 (Color figure online)
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Figure 11 represents the groups of agents of the WUTS hierarchy (squares)
depending on the two criteria that have been previously defined: the ratio of
KL divergence (loss(G, t)/ loss(A, t)) and the ratio of encoded values reduction
(gain(G, t)/ gain(A, t)). In this plot, quality groups are easily spotted:

– The closer to the bottom right corner the group is (red squares), the higher the
information loss is relatively to the complexity reduction. This is for exam-
ple the case of the Northern Europe group (W1111): the unexpected citation
number of the Norway agent makes the group very heterogeneous (see events
described in Subsect. 3.1). Higher-level European groups (W111 and W11) also
induces a significant information loss (their are close to the right side). Thus,
avoiding such groups during the aggregation ensures that we preserve the
details regarding this significant microscopic variation.

– On the contrary, the closer to the top left corner the group is (green squares),
the more the information loss is compensated by the complexity reduction.
This is the case of the Americas group and the South Pacifica group (resp.
W2 and W32). This indicates that these representation levels are particularly
interesting to provide with a synthetic view of the system. These groups indeed
correspond to homogeneous geographical areas where no significant event has
occurred during the observed time period (see map in Fig. 2).

– The Horn of Africa group (W132) has a better gain/loss ratio than the
higher-level Sub-Saharan Africa group (W13). This indicates that, if some
details are necessary to analyze the events occurring in Africa, the Horn of
Africa group can however be described as a whole, without giving more
details regarding this particular area. Hence, by choosing groups depending
on their gain/loss ratio, the observer can represent the system with several
spatial granularities in order to perfectly fit with the microscopic data.

This method allows to spot interesting groups of agent to build a synthetic
but consistent macroscopic representation of the system. The rest of this section
proposes an algorithm to automatize this evaluation process and to find the
combinations of groups (the organizations) that jointly optimize the two criteria.

6.2 Organizations Within a Hierarchy

Given a value of the trade-off parameter p, optimal organizations are those that
maximize the parametrized information criterion. Clustering techniques using
gain and loss measures as distances could find such optimal partitions. However,
results may have very little meaning for the MAS analysis since agents would
be aggregated regardless of their location within the system. In contrast, we
assume that, in most spatial MAS, there is a correlation between topology and
behavior. Hence, we propose that organizations should fit with the topological
constraints defined by the domain experts. In other agent-based applications,
such constraints may also be derived from semantic properties of the system
(and not necessarily topological properties).

In this section, we consider hierarchically organized MAS. A hierarchy H
is a set of nested groups, defined from the microscopic level (each agent is a
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group) to the whole MAS (only one group). The number of possible multiresolu-
tion organizations within such a hierarchy exponentially depends on the number
of groups and the number of levels. For UNEP (196 groups arranged in 4 lev-
els) and WUTS (231 groups arranged in 6 levels), we respectively have 1.3 × 106

and 3.8 × 1012 possible organizations. Finding the best one can thus be com-
putationally expensive in case of large-scale systems. The algorithm below finds
topologically-consistent organizations that maximize our parametrized informa-
tion criterion. Its complexity linearly depends on the number of groups in the
hierarchy (respectively 196 and 231 groups) by doing a depth-first search within
the branches of the hierarchy. Indeed, according to the sum property [14] of
the defined information-theoretic measures, each branch can be independently
evaluated (see [19] for details).

Algorithm that linearly finds optimal organizations within a hierarchy
Require: A hierarchy H and a trade-off parameter p in [0, 1].
Ensure: An organization made of groups in H that maximizes the pIC.
1: function findOptimalOrganization(H, p)
2: if H contains only one group G then return {G}
3: G← biggest group of H
4: bestMicroOrganization ← ∅
5: for each direct subhierarchy S of H do
6: aux← findOptimalOrganization(S, p)
7: bestMicroOrganization← union(bestMicroOrganization, aux)
8: end for
9: if pIC of {G} > pIC of bestMicroOrganization then return {G}

10: else return bestMicroOrganization

11: end function

6.3 Hierarchical Aggregation to Build Spatial Macro-
Representations

The above algorithm has been ran on the WUTS hierarchy for the articles pub-
lished by The Guardian during July 2011 (see Fig. 2). The plot in Fig. 12 gives
the complexity reduction and the information loss associated to the organizations
provided by the algorithm depending on the trade-off parameter p specified by
the observer. For p = 0, the optimal organization corresponds to the microscopic
representation (no information loss and no complexity reduction). As p increases,
groups of countries are chosen within the WUTS hierarchy in order to focus on
significant events. The observer can adjust the granularity of the generated rep-
resentation depending on the expected level of detail. Figures 13 and 14 present
two organizations respectively preserving at least 50 % and 70 % of the micro-
scopic information: loss(O, t)/ loss(A, t) < 0.5 and loss(O, t)/ loss(A, t) < 0.3
respectively for p < 0.86 and p < 0.43 (see Fig. 12).
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Fig. 12. Ratio of complexity reduction (gain) and information loss of the optimal
organizations of the spatial data presented in Fig. 2 according to the trade-off parameter

The map in Fig. 13 represents the observed-to-expected ratio according to
17 groups of countries, two of which are high-level groups where the observed
citation number is quite close to the expected value (the Americas group and
the Asia-Pacific group). No significant event has been spotted at this level
of detail. By contrast, two events are immediately highlighted in Europe and
in Africa. They correspond to the most unexpected citation numbers for which
an aggregation would induce a misleading information loss (at most 40 % of
information loss when p < 0.85 and at least 68 % when p > 0.85, see Fig. 12).

1. The map in Fig. 13 displays the national details regarding agents of the
Northern Europe group. Among them, the observed citation number of the
Norway agent is 3.7 times higher than expected. The observer is thus informed
that a significant event took place at the national level during July 2011 (the
two terrorist attacks of the 22th, cf. Subsect. 3.1).

2. This map also displays some details regarding the Sub-Saharan Africa
group, but only at a mesoscopic level constituted of 4 intermediary groups.
Among them, the observer notices that the citation number of the Horn of
Africa group is 1.8 times higher than expected. As the national details are
not represented for this particular group, the observer may consider that
this aggregated value is – at least at first glance – a good approximation
of the underlying values. She concludes that the observed-to-expected ratio
of citation number is uniformly high in the Horn of Africa. This group thus
highlights an event that occurred in an extended geographical area (the food
crisis that has been declared at the beginning of July 2011, cf. Subsect. 3.1).
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The aggregation algorithm thus allows to highlight significant events that
occur at different granularities of the system’s spatial organization by building
readable multiresolution representations out of the hierarchical structure. This
map thus constitutes a reasonable “first approximation” to describe the news
published by The Guardian during the month of July 2011. However, depending
on the analyzed events and the expected level of detail, the observer may adapt
the granularity of such a representation by adjusting the trade-off parameter
(see the map presented in Fig. 14).

Observed−to−expected ratio
 of citation number

2.9 to 3.7 times more cited

2.2 to 2.9 times more cited

1.7 to 2.2 times more cited

1.3 to 1.7 times more cited

1.3 times less to 1.3 times more cited

1.3 to 1.7 times less cited

1.7 to 2.2 times less cited

2.2 to 2.9 times less cited

2.9 to 3.7 times less cited

Fig. 13. Optimal geographical organization preserving at least 50 % of the microscopic
information (p < 0.86)

The map below is a little bit more detailed than the previous one, in partic-
ular for countries of the Asia-Pacific group and those of the Western Africa
group. Some other – less significant – microscopic events are thus represented:
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3. The severe floods that occurred in Thailand at the end of July 20115.
4. The development cooperation project that began the 16th of July between

the European Union and the Republic of Guinea-Bissau.

However, in this second map, the Horn of Africa group of agents is still
aggregated. This is only when the observer asks for at least 83 % of the micro-
scopic information (p < 0.39) that the algorithm provides the national details
regarding this geographical area. In that way, the algorithm can adapt the gen-
erated representations to the observer’s requirements.

Observed−to−expected ratio
 of citation number

2.9 to 3.7 times more cited

2.2 to 2.9 times more cited

1.7 to 2.2 times more cited

1.3 to 1.7 times more cited

1.3 times less to 1.3 times more cited

1.3 to 1.7 times less cited

1.7 to 2.2 times less cited

2.2 to 2.9 times less cited

2.9 to 3.7 times less cited

Fig. 14. Optimal geographical organization preserving at least 70% of the microscopic
information (p < 0.43)

5 http://en.wikipedia.org/wiki/2011 Thailand floods

http://en.wikipedia.org/wiki/2011_Thailand_floods


22 R. Lamarche-Perrin et al.

7 Generalization to Temporal Aggregation

The time series in Fig. 15 provides with the week-level variations of the observed-
to-expected ratio of citation number of the Greece agent by The Guardian
between the 3rd of May 2011 and the 20th of January 2013. Peaks of unex-
pected citation number reveal significant events in Greece recent history. In the
following, we will focus on three particular events:

1. The peak of citation that appears at the beginning of November 2011 is
explained by the announcement the 31st of October of a referendum regard-
ing the setting up of an austerity plan to reduce the Greek public debt. This
announcement is widely reported by the media. On the 4th of November,
the Minister of Finance announces the referendum withdrawal and the Prime
Minister George Papandreou arranges, on the same evening, a vote of confi-
dence in the Parliament that could lead to his resignation.

2. The peak that appears in the middle of May 2012 is explained by the failure
of the legislative elections that are held the 6th of May and concluded the
16th by the establishment of an interim government until the organization of
new elections.

3. The peak that appears at the end of June 2012 is explained by the holding
of these second legislative elections on the 17th of June6.
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Fig. 15. Microscopic time series (week level) of the observed-to-expected ratio of cita-
tion number of the Greece agent by The Guardian

6 See the Wikipedia page dedicated to the Greek government-debt crisis to get more
details regarding the chronology of these political events:
http://en.wikipedia.org/wiki/Greek government-debt crisis

http://en.wikipedia.org/wiki/Greek_government-debt_crisis
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In this section, the aggregation technique is applied to the system’s temporal
dimension. In this case, macroscopic events refer to time periods during which
the citation number of a given country (or group of countries) has been much
higher than expected. Such periods – that breaks with the system’s stable state –
may also be defined at different time scales (days, weeks, month, years, and so
on). When interpreting an aggregated time period, the observer can use – as
for the spatial aggregation – the marginal values to distribute the aggregated
citation number over the underlying microscopic time periods (i.e., the week
level) depending on the total number of citations on these time periods. For a
microscopic time period t in an aggregated time period T ′ ⊂ T , the interpreted
citation number is:

Q(a, t) = v(a, T ′)
v(A, t)
v(A, T ′)

This interpreted value is then compared to the observed value: P (a, t) =
v(a, t), according to KL divergence:

loss(a, T ′) =
∑

t∈T ′
P (a, t) log2

(
P (a, t)
Q(a, t)

)

=
∑

t∈T ′
v(a, t) log2

(
v(a, t) v(A, T ′)
v(a, T ′) v(A, t)

)
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Fig. 16. Ratio of complexity reduction (gain) and information loss of the optimal
partitions of the temporal data presented in Fig. 15 according to the trade-off parameter

The optimization of the corresponding parametrized Information Criterion
(see Subsect. 6.1) can be achieved by the algorithm of Jackson et al. [20]. It con-
sists in slicing the time series in intervals that maximize a given fitness function.
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We have shown in [19] that this time-aggregation algorithm is part of a larger
class of algorithms – including the space-aggregation algorithm proposed in this
paper – that consist in computing the optimal partitions of a dataset under
some constraints (e.g., hierarchical organization for spatial aggregation, ordered
dataset for temporal aggregation). The time-aggregation algorithm of Jackson
et al. is thus exploited as previously to build multiresolution representations of
the agent dynamics.

The plot in Fig. 16 gives the complexity reduction and the information loss of
the time partitions provided by the algorithm depending on the trade-off para-
meter p. Series in Figs. 17 and 18 present two such optimal partitions respectively
preserving at least 80 % and 50 % of the week-level information (resp. p < 0.55
and p < 0.89). The time series in Fig. 17 thus summarizes the microscopic data
by aggregating groups of weeks for which the observed-to-expected ratio of cita-
tion number is quite homogeneous. Even if the result contains less details, it still
provides significant information for the analysis of Greek news. In particular,
the three significant aforementioned peaks are highlighted and easily spotted by
the observer. Moreover, the variations between the peaks are synthetically rep-
resented. This allows to describe the system dynamics according to macroscopic
time periods.
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Fig. 17. Optimal temporal partition preserving at least 50 % of the microscopic infor-
mation (p < 0.55)

The time series in Fig. 18 provides with an even more aggregated represen-
tation of time variations. Only the most significant events are represented:

1. The first peak, corresponding to the announcement the 31st of October of a
Greek referendum, is strongly highlighted by the aggregation process.
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Fig. 18. Optimal temporal partition preserving at least 80% of the microscopic infor-
mation (p < 0.89)

2. The two peaks of May and June 2012, respectively corresponding to the leg-
islative elections of the 6th of May and the 17th of June, are aggregated
together, now constituting a unique homogeneous time period of 7 weeks. The
corresponding event is interpreted as “the Greek legislative elections of 2012”,
without giving the week-level details of this month-scale event. The aggrega-
tion process thus provides consistent temporal abstractions to describe and
analyze Greek events at a higher level of representation.

3. This time series also gives an interesting macroscopic information: the citation
number of the Greece agent has been globally decreasing during the observa-
tion period. This could be explained by the declining media interest regarding
the Greek crisis after the arrival in news of other economical crises concern-
ing European countries such as Spain and Italy. The aggregation process thus
allows to represent the system’s temporal dynamics at several time-scales by
highlighting significant macroscopic variations. If we had the sufficient tem-
poral depth, we would be able to identify a year-long time period in Greek
history corresponding to “the government-dept crisis” described as a whole.

8 Conclusion and Perspectives

The design and debugging of complex MAS need abstraction tools to work at
a higher level of representation. However, such tools have to be developed and
exploited with the greatest precaution in order to preserve useful information
regarding the system behavior and to guarantee that generated representations
are not misleading for the observer. To that extent, this paper focuses on aggre-
gation techniques for large-scale MAS and gives clues to estimate their quality in
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term of complexity and information content. They are applied to the geographi-
cal and temporal aggregation of international relations through the point of view
of on-line newspapers. We show that, by combining information-theoretic mea-
sures, one can give interesting feedback regarding the use of abstractions and
build multiresolution representations of the dataset that adapt to the effective
information content and to the observer’s requirements.

We believe that these measures and algorithms can be generalized to a large
class of MAS, provided that:

– one can observe and describe the agents microscopic behavior according to
several discretized microscopic dimensions (here: space and time);

– one can define measures to express the descriptions quality (here: complexity
and information content);

– these measures have the sum property [14];
– the semantic and topological properties of the aggregated dimensions can

be used to provide meaningful abstractions for the domain experts (here:
hierarchical organizations and order of time).

Future work will apply these techniques to other dimensions of the analy-
sis: e.g. for aggregation of newspapers, thematic aggregation, multidimensional
aggregation [19]. Besides this work, we are currently exploiting these techniques
for performance visualization of large-scale distributed systems [21]. This kind
of application shows that our techniques can be scaled up to one million agents.
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