ICTAI'14

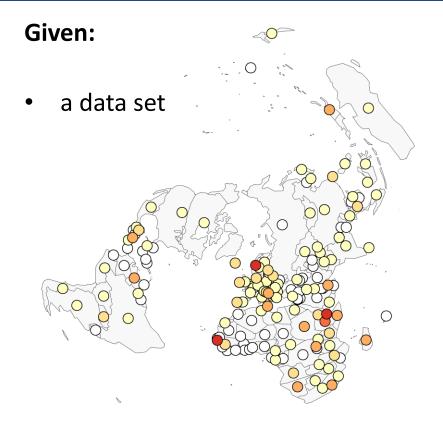
Limassol Nov. 10-12, 2014

A Generic Algorithmic Framework to Solve Special Versions of the Set Partitioning Problem

<u>Robin Lamarche-Perrin¹</u>, Yves Demazeau², and Jean-Marc Vincent²

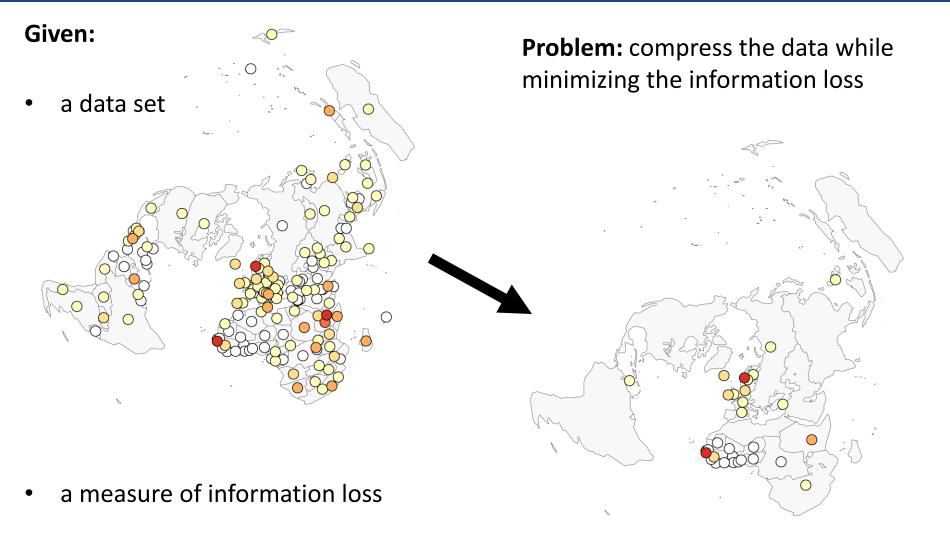
¹ Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany ² Laboratoire d'Informatique de Grenoble, France

Compression of Geographical Data

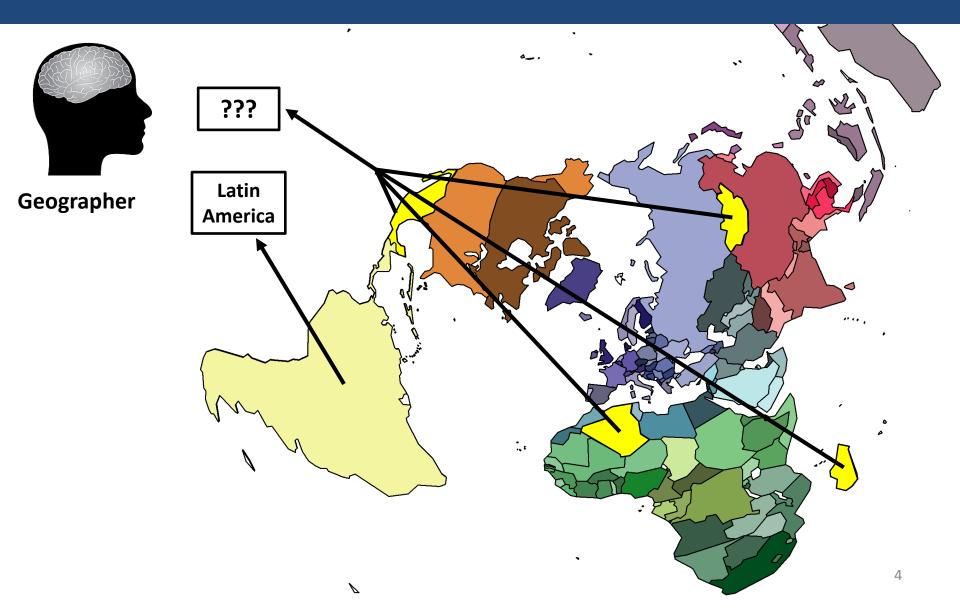


• a measure of information loss

Compression of Geographical Data

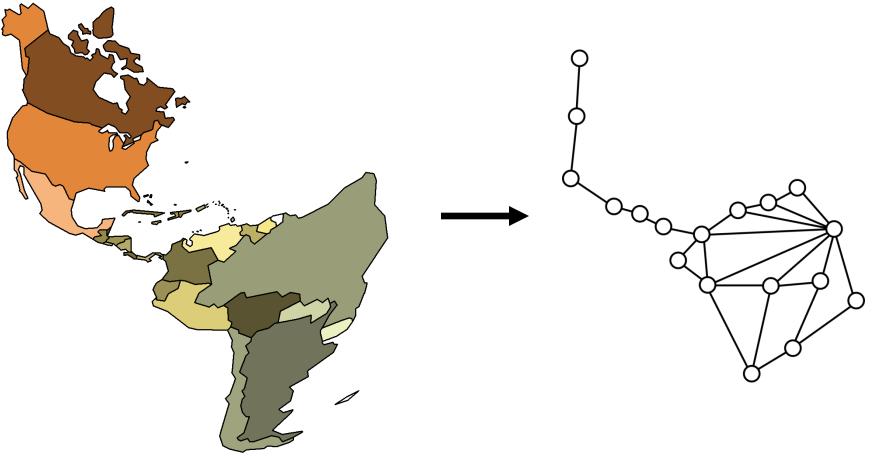


The Semantics of Geographical Aggregates



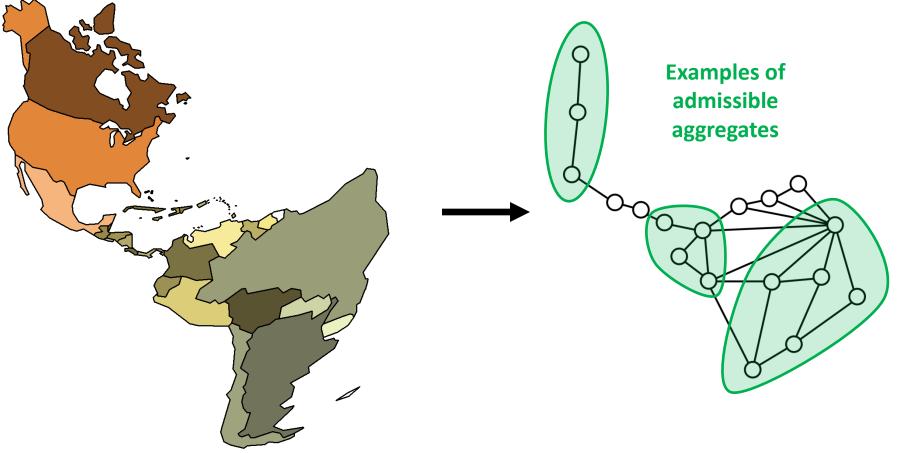
Preserving the Topological Structure

Admissible aggregates = Connected territorial units

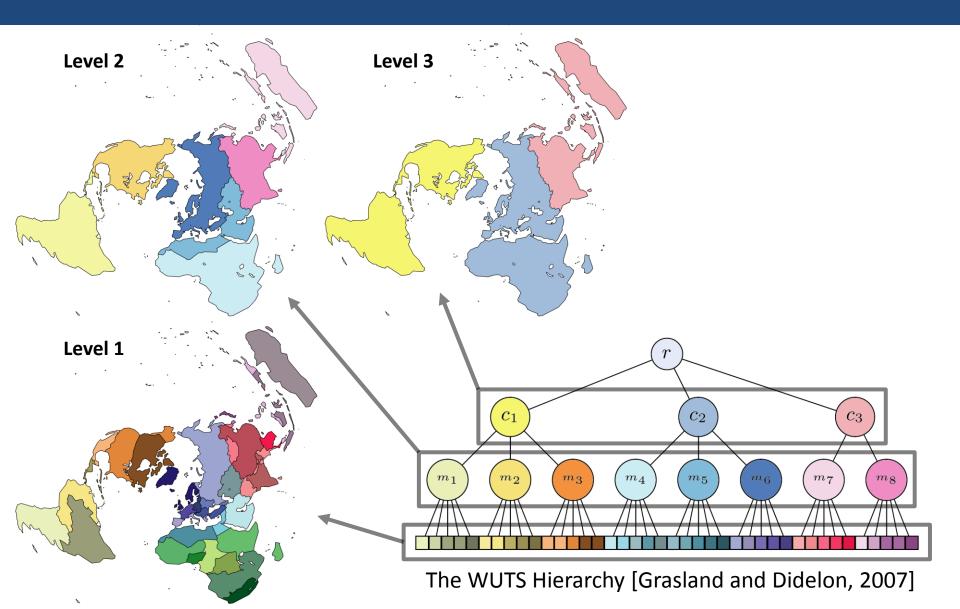


Preserving the Topological Structure

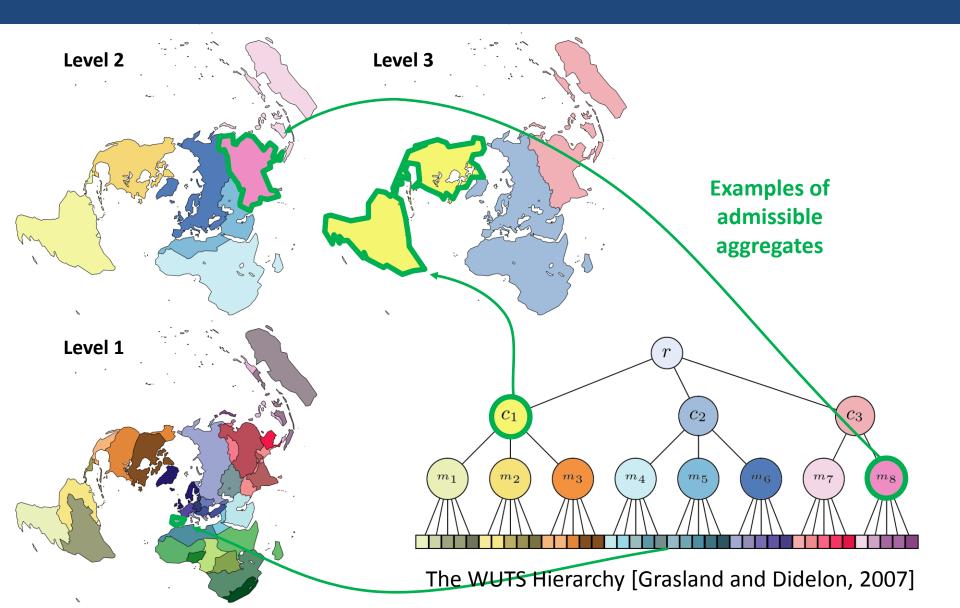
Admissible aggregates = Connected territorial units



Preserving Social and Political Features

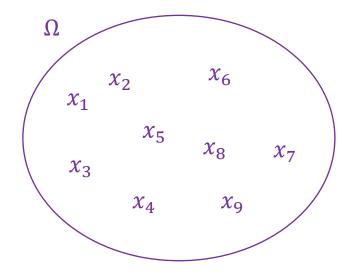


Preserving Social and Political Features



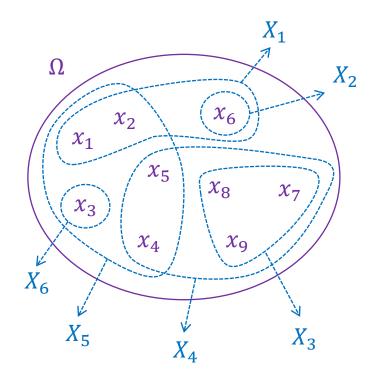
Given:

• a set of individuals $\Omega = \{x_1, \dots, x_n\}$



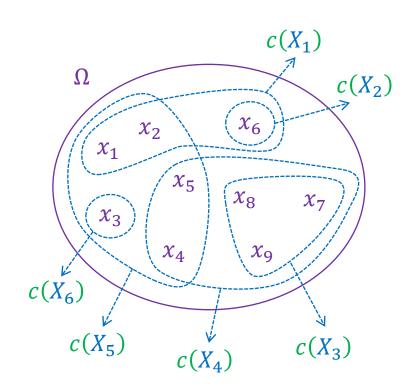
Given:

- a set of individuals $\Omega = \{x_1, \dots, x_n\}$
- a set of admissible parts $\mathcal{P} = \{X_1, \dots, X_m\} \subset 2^{\Omega}$



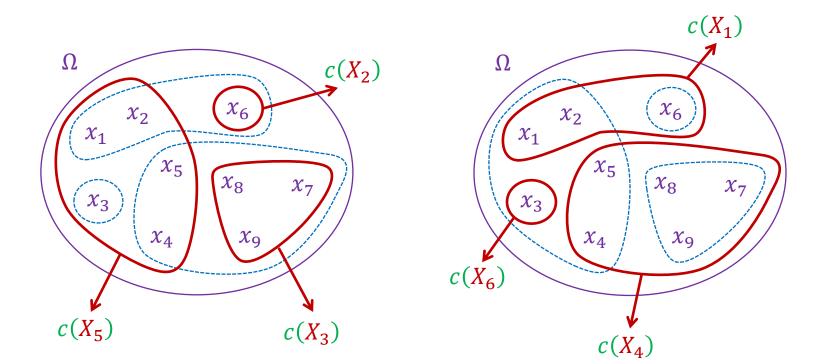
Given:

- a set of individuals $\Omega = \{x_1, \dots, x_n\}$
- a set of admissible parts $\mathcal{P} = \{X_1, \dots, X_m\} \subset 2^{\Omega}$
- a cost function $c: \mathcal{P} \to \mathbb{R}$



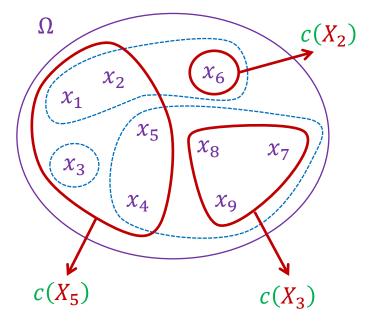
Given:

- a set of individuals $\Omega = \{x_1, \dots, x_n\}$
- a set of admissible parts $\mathcal{P} = \{X_1, \dots, X_m\} \subset 2^{\Omega}$
- a cost function $c: \mathcal{P} \to \mathbb{R}$
- the corresponding set of admissible partitions $\mathfrak{P} = \{ \mathcal{X} \subset \mathcal{P} \text{ such that } \mathcal{X} \text{ is a partition of } \Omega \}$



Given:

- a set of individuals $\Omega = \{x_1, \dots, x_n\}$
- a set of admissible parts $\mathcal{P} = \{X_1, \dots, X_m\} \subset 2^{\Omega}$
- a cost function $c: \mathcal{P} \to \mathbb{R}$
- the corresponding set of admissible partitions $\mathfrak{P} = \{ \mathcal{X} \subset \mathcal{P} \text{ such that } \mathcal{X} \text{ is a partition of } \Omega \}$



Problem: Find an admissible partition that minimizes the cost function:

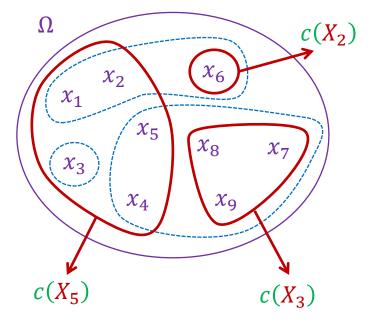
$$\mathcal{X}^* = \operatorname*{arg\,min}_{\mathcal{X}\in\mathfrak{P}} \left(\sum_{X\in\mathcal{X}} c(X)\right)$$

\rightarrow NP-complete!

Given:

- a set of individuals $\Omega = \{x_1, \dots, x_n\}$
- a set of admissible parts $\mathcal{P} = \{X_1, \dots, X_m\} \subset 2^{\Omega}$
- a cost function $c: \mathcal{P} \to \mathbb{R}$

• the corresponding set of admissible partitions $\mathfrak{P} = \{ \mathcal{X} \subset \mathcal{P} \text{ such that } \mathcal{X} \text{ is a partition of } \Omega \}$



Problem: Find an admissible partition that minimizes the cost function:

$$\mathcal{X}^* = \operatorname*{arg\,min}_{\mathcal{X}\in\mathfrak{P}} \left(\sum_{X\in\mathcal{X}} c(X)\right)$$

\rightarrow NP-complete!

Special Versions

Multilevel Geographical Analysis

- $\Omega = territorial units$
- $\mathcal{P} = admissible aggregates$
- c = compression rate
- $\mathfrak{P} = aggregated representations$

Hierarchical SPP

- Assumption: \mathcal{P} forms a hierarchy
- Result: O(n) depth-first search
 [Pons et al., 2011] [Lamarche-Perrin et al., 2014]

Graph SPP

- Assumption: \mathcal{P} are connected parts of a graph
- Result: NP-complete [Becker et al., 1998]



Special Versions

Hierarchical SPP

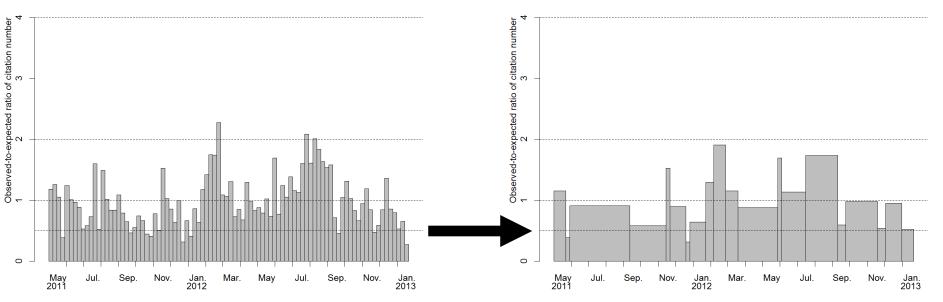
- Assumption: $\mathcal P$ forms a hierarchy
- Result: O(n) depth-first search
 [Pons et al., 2011] [Lamarche-Perrin et al., 2014]

Graph SPP

- Assumption: \mathcal{P} are connected parts of a graph
- Result: NP-complete [Becker et al., 1998]

Ordered SPP

- Assumption: \mathcal{P} are intervals
- Result: $O(n^2)$ dynamic programming [Anily *et al.*, 1991] [Jackson *et al.*, 2005]



Multilevel Geographical Analysis

Time Series Analysis

- $\Omega = ordered data points$
- $\mathcal{P} = \text{time intervals}$
- c = compression rate
- $\mathfrak{P} = \operatorname{aggregated}$ time series

Multilevel Geographical Analysis

Special Versions

Hierarchical SPP

- Assumption: *P* forms a hierarchy
- Result: O(n) depth-first search
 [Pons et al., 2011] [Lamarche-Perrin et al., 2014]

Graph SPP

- Assumption: \mathcal{P} are connected parts of a graph
- Result: NP-complete [Becker et al., 1998]

Ordered SPP

- Assumption: $\mathcal P$ are intervals
- Result: $O(n^2)$ dynamic programming [Anily *et al.*, 1991] [Jackson *et al.*, 2005]

Complete SPP

- Assumption: *P* contains all parts
- Result: $\mathcal{O}(3^n)$ dynamic programming [Yeh, 1986] [Lehmann *et al.*, 2006]

Coalition Structure Generation

Time Series Analysis

- $\Omega = agents$
- $\mathcal{P} = \text{feasible teams}$
- *c* = interaction costs
- $\mathfrak{P} =$ coalition structures

Multilevel Geographical Analysis

Special Versions

Hierarchical SPP

- Assumption: *P* forms a hierarchy
- Result: O(n) depth-first search [Pons *et al.*, 2011] [Lamarche-Perrin *et al.*, 2014]

Graph SPP

- Assumption: ${\mathcal P}$ are connected parts of a graph
- Result: NP-complete [Becker et al., 1998]

Ordered SPP

- Assumption: ${\mathcal P}$ are intervals
- Result: $O(n^2)$ dynamic programming [Anily *et al.*, 1991] [Jackson *et al.*, 2005]

Complete SPP

- Assumption: *P* contains all parts
- Result: $\mathcal{O}(3^n)$ dynamic programming [Yeh, 1986] [Lehmann *et al.*, 2006]

Ordered x Hierarchical SPP [Dosimont et al., 2014]

Array SPP [Muthukrishnan et al., 2005]

SPP with Size Bounds [Rothkopf et al., 1998]

Cyclic SPP [Rothkopf et al., 1998]

Community Detection

Coalition Structure Generation

Time Series Analysis

Distributed System Monitoring

Load Balancing Problem

Database Optimization

Image Processing

Combinatorial Auctions

A Lack of Unified Algorithmic Approaches

- The Ordered SPP has been solved at least 6 times in 30 years: [Chakravarty *et al.*, 1982] [Anily *et al.*, 1991] [Vidal, 1993] [Rothkopf *et al.*, 1998]
 [Jackson *et al.*, 2005] [Lamarche-Perrin *et al.*, 2013]
- Characterization of tractability based on general algebraic properties
 - Unimodularity of the integer matrix

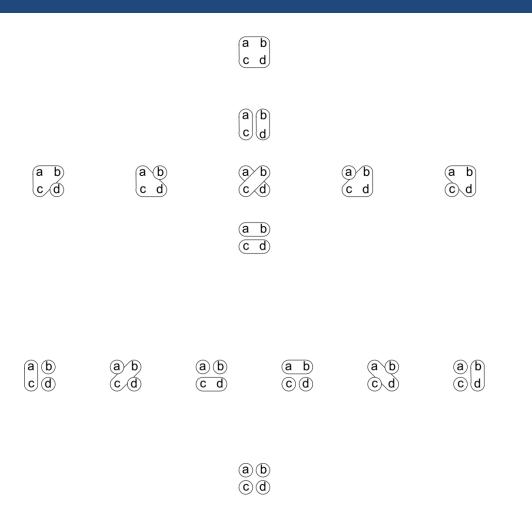
[Minoux, 1987]

Perfection of the intersection graph

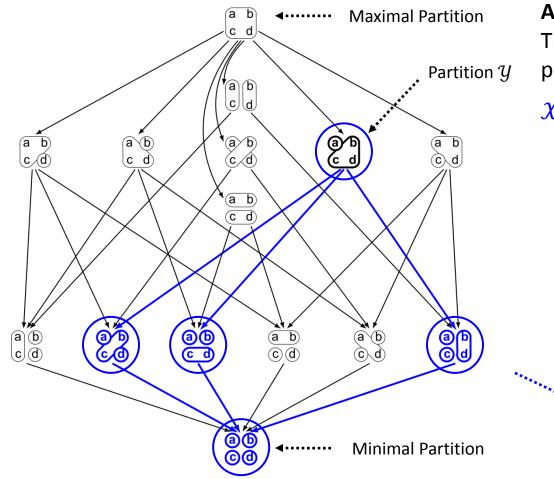
[Müller, 2006]

- → Too general, and thus too weak in practice!
- Our contribution: a unified algorithmic framework
- 1. A proper understanding of the algebraic structure of the SPP
- 2. A generic algorithm exploiting this algebraic structure
- 3. Specialized implementations for versions of the SPP

The Poset of Partitions



The Poset of Partitions



Algebraic Structure

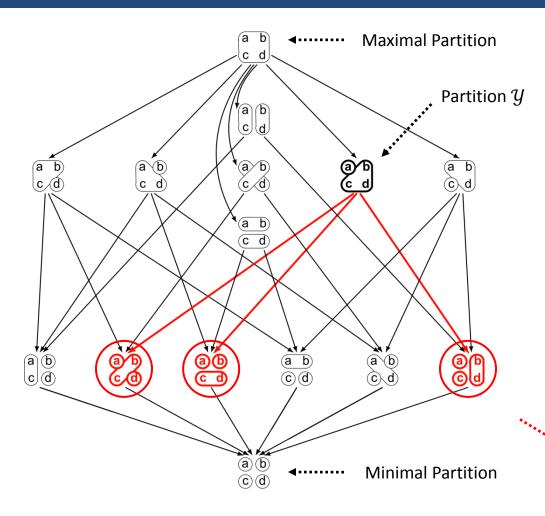
The *refinement relation* defines a partial order on the set of partitions:

 \mathcal{X} refines \mathcal{Y}

 $\Leftrightarrow \quad \forall X \in \mathcal{X}, \ \exists Y \in \mathcal{Y}, \ X \subset Y$

 $\Re(\mathcal{Y}) = \{\mathcal{X} \text{ refining } \mathcal{Y}\}$

The Poset of Partitions



Algebraic Structure

The *refinement relation* defines a partial order on the set of partitions:

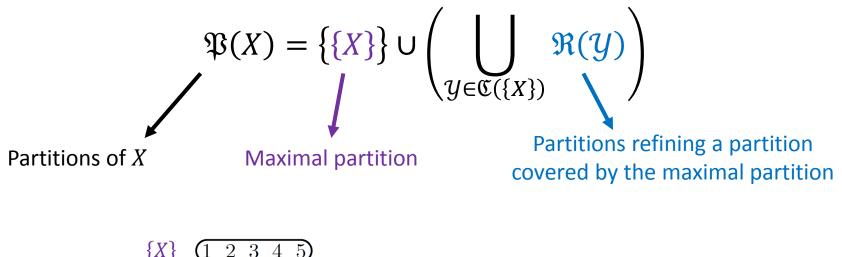
 $\begin{array}{ll} \mathcal{X} \text{ refines } \mathcal{Y} \\ \Leftrightarrow & \forall X \in \mathcal{X}, \ \exists Y \in \mathcal{Y}, \ X \subset Y \end{array}$

The *covering relation* is the transitive reduction of the refinement relation:

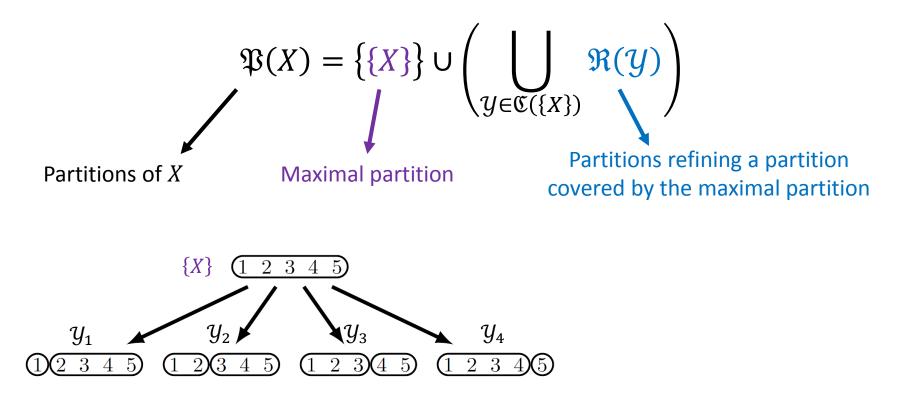
 ${\mathcal X}$ is covered by ${\mathcal Y}$

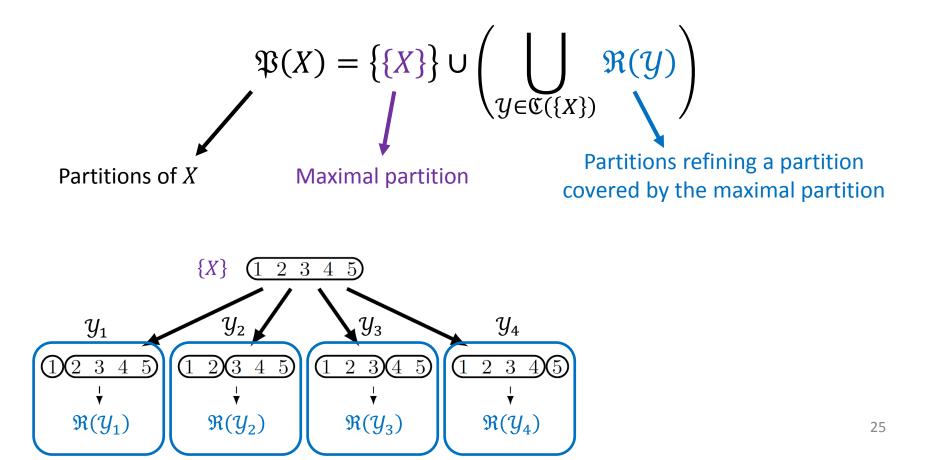
 $\Leftrightarrow \mathcal{X} \text{ is a "direct" refinement of } \mathcal{Y}$

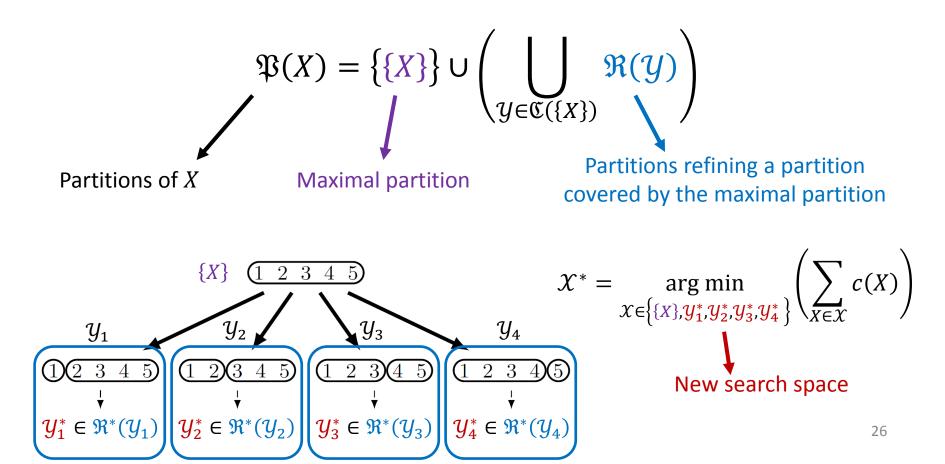
 $\Re(\mathcal{Y}) = \{ \mathcal{X} \text{ refining } \mathcal{Y} \}$ $\mathfrak{C}(\mathcal{Y}) = \{ \mathcal{X} \text{ covering } \mathcal{Y} \}$



$$(1 \ 2 \ 3 \ 4 \ 5)$$







Principle of Optimality

For any partition \mathcal{Y} of Ω , the union of optimal partitions of the parts of \mathcal{Y} is optimal among the refinements of \mathcal{Y} :

$$\forall Y \in \mathcal{Y}, \quad \mathcal{Y}_Y^* \in \mathfrak{P}^*(Y) \quad \Rightarrow \qquad \left(\bigcup_{Y \in \mathcal{Y}} \mathcal{Y}_Y^*\right) \in \mathfrak{R}^*(\mathcal{Y})$$

Locally-optimal partitions
of the parts of \mathcal{Y} Optimal partition among
the refinements of \mathcal{Y}

Y (1 2)(3 4 5)

Principle of Optimality

For any partition \mathcal{Y} of Ω , the union of optimal partitions of the parts of \mathcal{Y} is optimal among the refinements of \mathcal{Y} :

$$\forall Y \in \mathcal{Y}, \quad \mathcal{Y}_Y^* \in \mathfrak{P}^*(Y) \quad \Rightarrow \qquad \left(\bigcup_{Y \in \mathcal{Y}} \mathcal{Y}_Y^*\right) \in \mathfrak{R}^*(\mathcal{Y})$$

$$\downarrow$$

$$\mathsf{Locally-optimal partitions}$$
of the parts of \mathcal{Y}

$$\mathcal{Y} \quad (2345) \quad (2345) \quad Y_2$$

$$\mathsf{V}_1 \quad (2345) \quad (2345) \quad Y_2$$

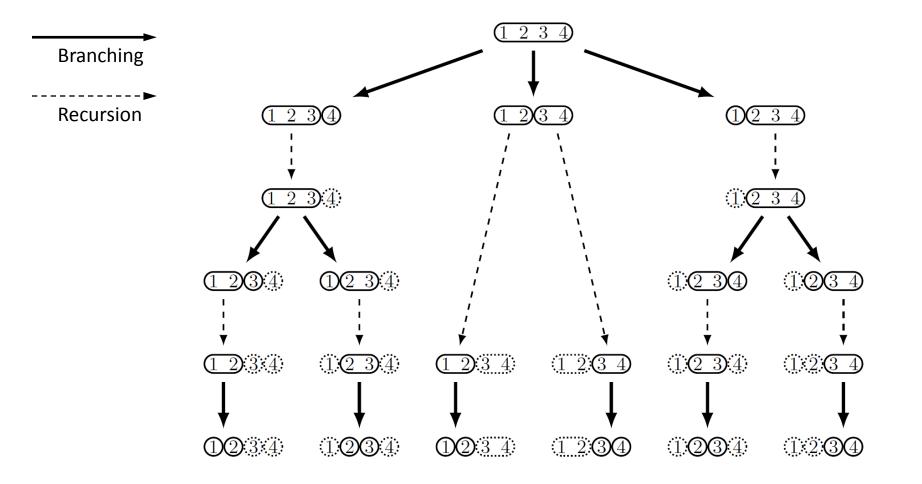
Principle of Optimality

 Y_1

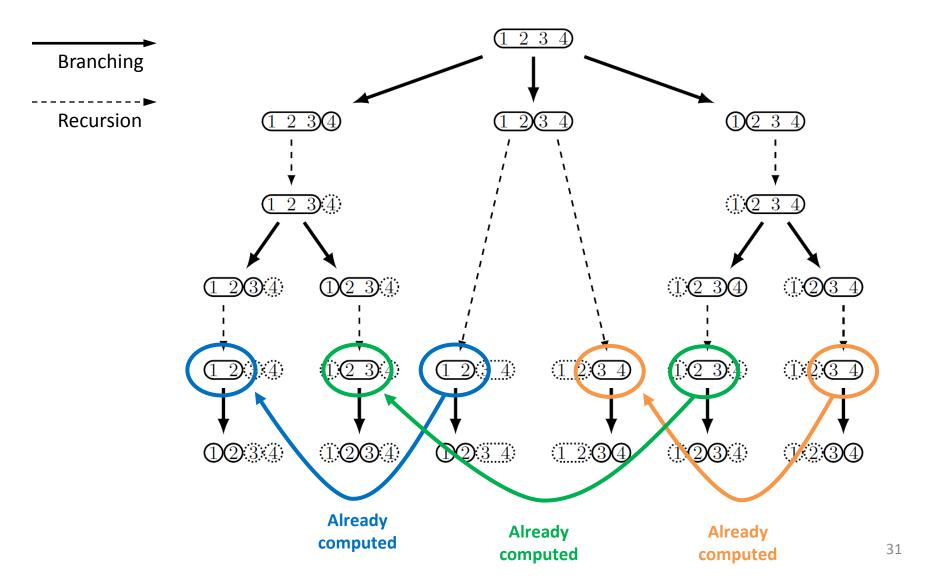
 $\mathcal{Y}_{Y_1}^*$

For any partition \mathcal{Y} of Ω , the union of optimal partitions of the parts of \mathcal{Y} is optimal among the refinements of \mathcal{Y} :

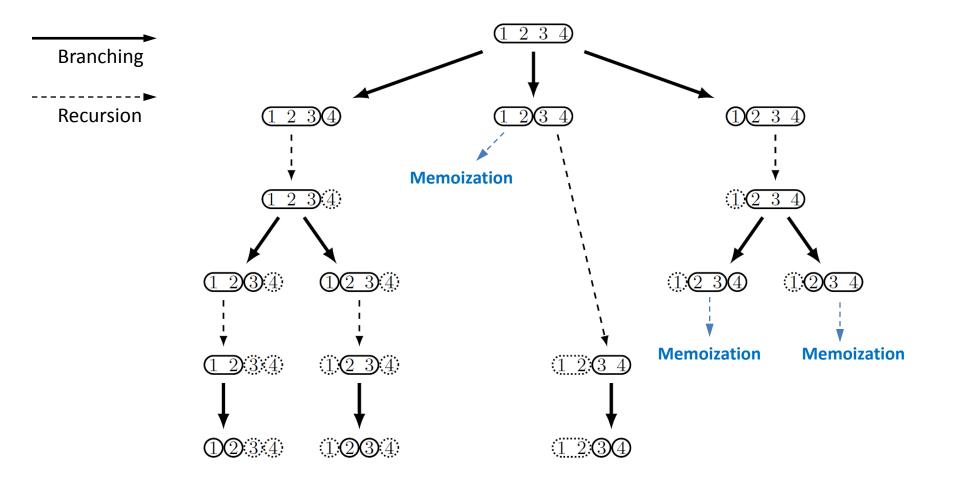
Execution of the Generic Algorithm Ordered SPP on a Population of Size 4



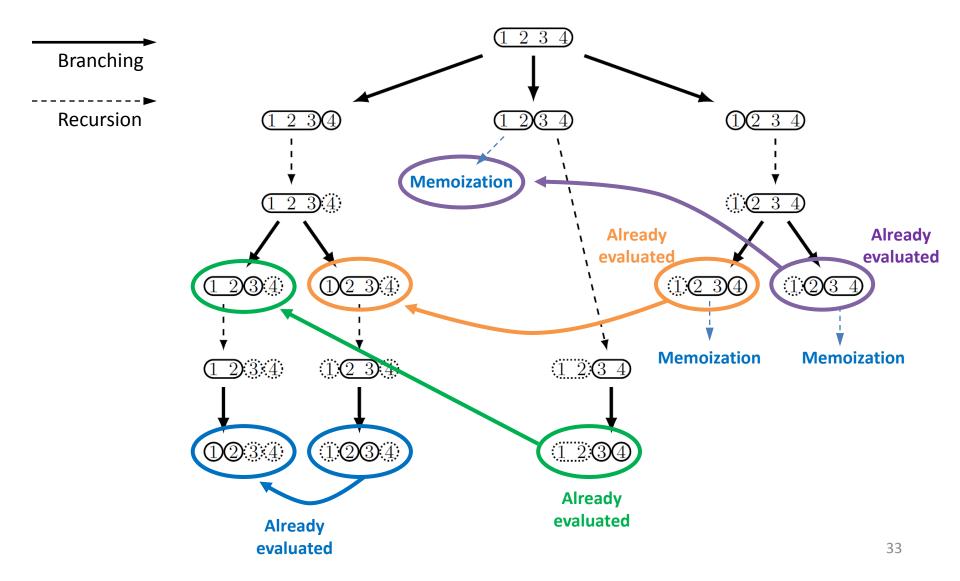
Memoization



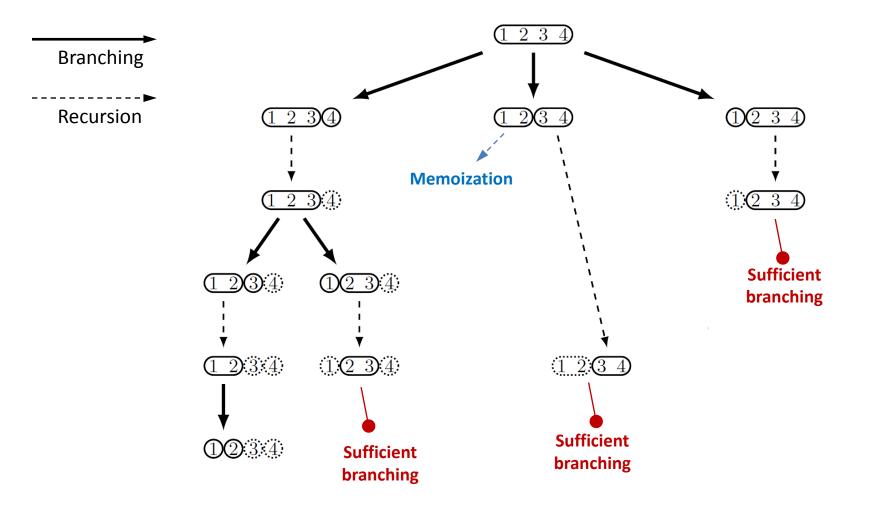
Memoization



Non-redundant Branching



Non-redundant Branching



The Generic Algorithm

A Generic Algorithm to Solve the SPP

Global Inputs:

- c a cost function;
- \mathcal{P} a set of admissible parts defining admissible partitions;
- \mathfrak{L} a set of locally-optimal admissible partitions of parts on which the algorithm has already been applied.

Local Inputs:

- X an admissible part;
- $\overline{\mathcal{X}}$ the complementary partition of X inherited from the "higher" call ($\overline{\mathcal{X}}$ is a partition of $\Omega \setminus X$);
- D the set of admissible partitions which refinements have already been evaluated during "higher" calls.

Output:

- \mathcal{X}^* a locally-optimal admissible partition of X.
- If the algorithm has already been applied to part X, return the locally-optimal partition recorded in \mathfrak{L} .
- Initialization: $\mathcal{X}^* \leftarrow \{\{X\}\}\$ and $\mathfrak{D}' \leftarrow \mathfrak{D}$.
- For each $\mathcal{Y} \in \mathfrak{C}(\{X\})$ such that $\overline{\mathcal{X}} \cup \mathcal{Y}$ does not refine any partition in \mathfrak{D} , do the following:
 - For each part $Y \in \mathcal{Y}$, call the algorithm with local inputs $X \leftarrow Y, \overline{\mathcal{X}} \leftarrow \overline{\mathcal{X}} \cup \mathcal{Y} \setminus \{Y\}$, and $\mathfrak{D} \leftarrow \mathfrak{D}'$ to compute a locally-optimal partition $\mathcal{Y}_Y^* \in \mathfrak{P}^*(Y)$.
 - $\mathcal{Y}^* \leftarrow \bigcup_{Y \in \mathcal{Y}} \mathcal{Y}_Y^*$.

- If
$$c(\mathcal{Y}^*) > c(\mathcal{X}^*)$$
, then $\mathcal{X}^* \leftarrow \mathcal{Y}^*$.

$$- \mathfrak{D}' \leftarrow \mathfrak{D}' \cup \{\mathcal{Y}\}.$$

- Return \mathcal{X}^* and record this result in $\mathfrak{L}.$

Generic: solve any instance of the SPP \rightarrow but inefficient for special versions

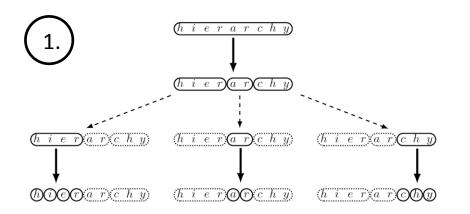
Designing dedicated implementations:

Analysing the generic execution

Building appropriate data structures

Deriving a specialized algorithm

Application to the Hierarchical SPP



3.

Algorithm 1 for the HSPP

Require: A tree with a label *cost* on each node representing the cost of the corresponding admissible part.

Ensure: Each node of the tree has a Boolean label *optimalCut* representing an optimal partition (see above).

procedure SOLVEHSPP(*node*) **if** *node* has no child **then**

 $\begin{array}{l} node \ optimal Cost \leftarrow node.cost \\ node.optimal Cut \leftarrow true \\ \hline else \\ MCost \leftarrow node.cost \\ \mu Cost \leftarrow 0 \\ for \ each \ child \ of \ node \ do \\ & \ SOLVEHSPP(child) \\ \mu Cost \leftarrow \mu Cost + child.optimal Cost \\ node.optimal Cost \leftarrow \max(\mu Cost, MCost) \\ node.optimal Cut \leftarrow (\mu Cost < MCost) \end{array}$

Data S

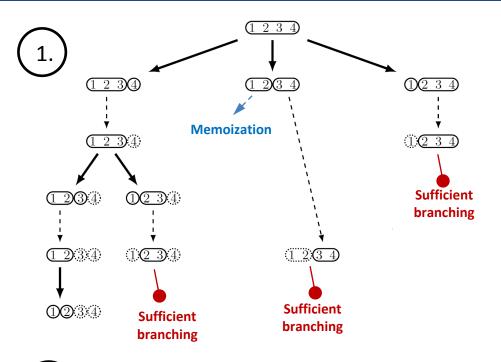
2.

Data Structure

- Set of parts: rooted tree
- Optimal partition: cut of the tree
- Algorithm: depth-first search



Application to the Ordered SPP



Algorithm 2 for the OSPP

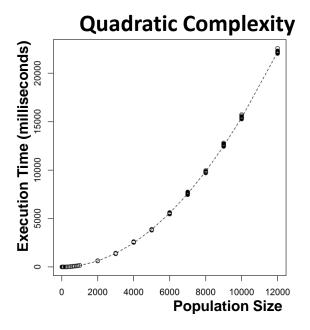
Require: A matrix *cost* recording the costs of intervals. **Ensure:** The vector *optimalCut* represents an optimal partition (see text above).

```
 \begin{array}{l} \textbf{for } j \in \llbracket 1,n \rrbracket \, \textbf{do} \\ optimalCost[j] \leftarrow cost[1,j] \\ optimalCut[j] \leftarrow 1 \\ \textbf{for } cut \in \llbracket 2,j \rrbracket \, \textbf{do} \\ \mu Cost \leftarrow optimalCost[cut-1] + cost[cut,j] \\ \textbf{if } \mu Cost > optimalCost[j] \, \textbf{then} \\ optimalCost[j] \leftarrow \mu Cost \\ optimalCut[j] \leftarrow cut \end{array}
```

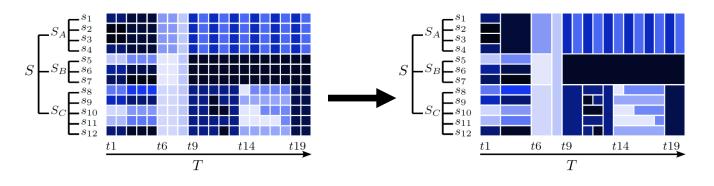
Data Structure

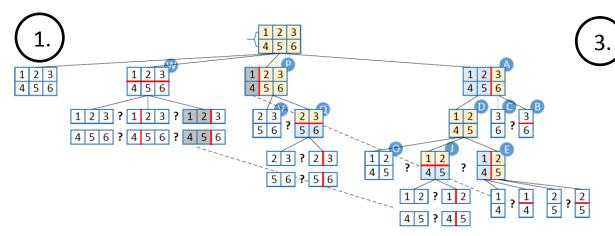
2.

- Set of parts: triangular matrix
- Optimal partition: array of cuts
- Algorithm: dynamic programming



Application to a Multidimensional SPP [Dosimont *et al.*, CLUSTER 2014]





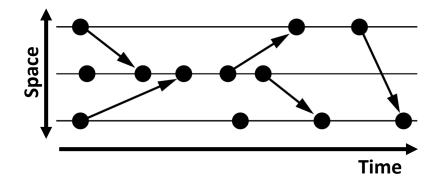
Data Structure

- Set of parts: rooted tree of triangular matrices
- Optimal partition: cut of the tree and arrays of cuts
- Algorithm: depth-first search and dynamic programming

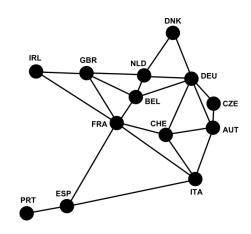
Algorithm 1 computes a hierarchy-and-order-consistent partition that maximizes the parametrized information criterion **procedure** *node*.COMPUTEOPTIMALPARTITION(*p*) ▷ Recursion for each child do child.COMPUTEOPTIMALPARTITION(p) for $i = |T| - 1, \dots, 0$ do ▷ Iteration for j = i, ..., |T| - 1 do $cut[i, j] \leftarrow j$ ▷ No cut $pIC[i, j] \leftarrow p.gain[i, j] - (1 - p).loss[i, j]$ if has children then ▷ Spatial cut? $pIC_s \leftarrow 0$ for each child do $pIC_s \leftarrow pIC_s + child.pIC[i, j]$ if $pIC_s > pIC[i, j]$ then $cut[i, j] \leftarrow -1$ $pIC[i, j] \leftarrow pIC_s$ for $cut_t = i, ..., j - 1$ do ▷ Temporal cut? $pIC_t \leftarrow pIC[i, cut] + pIC[cut + 1, j]$ if $pIC_t > pIC[i, j]$ then $cut[i, j] \leftarrow cut_t$ $pIC[i, j] \leftarrow pIC_t$

Application Perspectives

Partitioning of Interaction Diagrams [Mattern, 1989]



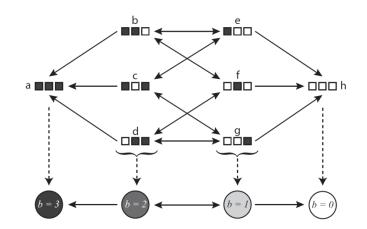
Partitioning of Graphs



Partitioning of Interaction Matrices

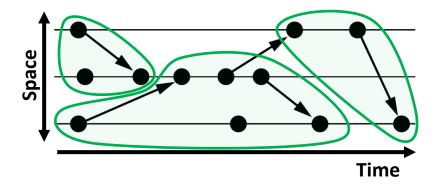
	ESP	FRA	GBR	BEL	CHE
ESP	х	12	11	10	4
FRA	14	х	12	12	5
GBR	20	11	х	6	9
BEL	15	9	6	х	5
CHE	10	16	17	9	х

Partitioning the State Space of Dynamical Systems [Banisch et al., 2013]

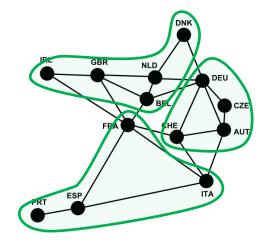


Application Perspectives

Partitioning of Interaction Diagrams [Mattern, 1989]



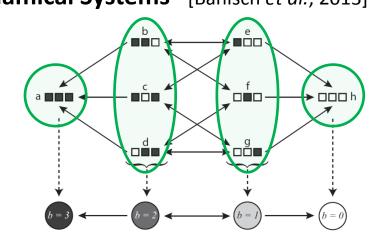
Partitioning of Graphs



Partitioning of Interaction Matrices

	ESP	FRA	GBR	BEL	CHE
ESP	х	12	11	10	4
FRA	14	х	12	12	5
GBR	20	11	х	6	9
BEL	15	9	6	х	5
CHE	10	16	17	9	Х

Partitioning the State Space of Dynamical Systems [Banisch et al., 2013]



ICTAI'14 Limassol, Nov. 17-20, 2013

THANK YOU FOR YOUR ATTENTION

Email: Robin.Lamarche-Perrin@mis.mpg.de

Page: www.mis.mpg.de/jjost/members/robin-lamarche-perrin.html