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Compression of Geographical Data 

• a data set 

• a measure of information loss 

Given: 
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Compression of Geographical Data 

• a data set 

• a measure of information loss 

Given: 
Problem: compress the data while 
minimizing the information loss 
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Geographer 
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The Semantics of Geographical Aggregates 

Latin 
America 

  ???   



Preserving the Topological Structure 

Admissible aggregates   =   Connected territorial units 
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Preserving the Topological Structure 

Admissible aggregates   =   Connected territorial units 
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Examples of 
admissible 
aggregates 



Level 1 

Level 2 Level 3 

Preserving Social and Political Features 

The WUTS Hierarchy [Grasland and Didelon, 2007] 



Level 1 

Level 2 Level 3 

The WUTS Hierarchy [Grasland and Didelon, 2007] 

Examples of 
admissible 
aggregates 

Preserving Social and Political Features 
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The Set Partitioning Problem 

Given: 
• a set of individuals Ω = 𝑥1, … , 𝑥𝑛  

𝑥1 
𝑥2 

𝑥3 

𝑥4 

𝑥5 

𝑥6 

𝑥7 𝑥8 

𝑥9 

Ω 
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The Set Partitioning Problem 

Given: 
• a set of individuals Ω = 𝑥1, … , 𝑥𝑛  
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The Set Partitioning Problem 

Given: 
• a set of individuals Ω = 𝑥1, … , 𝑥𝑛  
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The Set Partitioning Problem 

Given: 
• a set of individuals Ω = 𝑥1, … , 𝑥𝑛  
• a set of admissible parts 𝒫 = 𝑋1, … , 𝑋𝑚 ⊂ 2

Ω 
• a cost function  𝑐 ∶ 𝒫 → ℝ 
• the corresponding set of admissible partitions 𝔓 = 𝒳 ⊂ 𝒫 such that 𝒳 is a partition of Ω  
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𝑥3 
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The Set Partitioning Problem 

Given: 
• a set of individuals Ω = 𝑥1, … , 𝑥𝑛  
• a set of admissible parts 𝒫 = 𝑋1, … , 𝑋𝑚 ⊂ 2

Ω 
• a cost function  𝑐 ∶ 𝒫 → ℝ 
• the corresponding set of admissible partitions 𝔓 = 𝒳 ⊂ 𝒫 such that 𝒳 is a partition of Ω  

 

Problem: Find an admissible partition 
that minimizes the cost function: 

 

𝒳∗ = arg min
𝒳∈𝔓

 𝑐 𝑋

𝑋∈𝒳

 

→ NP-complete! 
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The Set Partitioning Problem 

Given: 
• a set of individuals Ω = 𝑥1, … , 𝑥𝑛  
• a set of admissible parts 𝒫 = 𝑋1, … , 𝑋𝑚 ⊂ 2

Ω 
• a cost function  𝑐 ∶ 𝒫 → ℝ 
• the corresponding set of admissible partitions 𝔓 = 𝒳 ⊂ 𝒫 such that 𝒳 is a partition of Ω  

 

Problem: Find an admissible partition 
that minimizes the cost function: 

 

𝒳∗ = arg min
𝒳∈𝔓

 𝑐 𝑋

𝑋∈𝒳

 

→ NP-complete! 

Additional 
assumptions 
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Applications 

Multilevel Geographical Analysis 
• Ω = territorial units 
• 𝒫 = admissible aggregates 
• 𝑐 = compression rate 
• 𝔓 = aggregated representations 

Hierarchical SPP 
• Assumption: 𝒫 forms a hierarchy 
• Result: 𝒪 𝑛  depth-first search 
      [Pons et al., 2011] [Lamarche-Perrin et al., 2014] 

Special Versions 

Graph SPP 
• Assumption: 𝒫 are connected parts of a graph 
• Result: NP-complete   [Becker et al., 1998] 
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Applications 

Time Series Analysis 

Multilevel Geographical Analysis Hierarchical SPP 
• Assumption: 𝒫 forms a hierarchy 
• Result: 𝒪 𝑛  depth-first search 
      [Pons et al., 2011] [Lamarche-Perrin et al., 2014] 

Ordered SPP 
• Assumption: 𝒫 are intervals 
• Result: 𝒪 𝑛2  dynamic programming 
      [Anily et al., 1991] [Jackson et al., 2005] 

Special Versions 

Graph SPP 
• Assumption: 𝒫 are connected parts of a graph 
• Result: NP-complete   [Becker et al., 1998] 

• Ω = ordered data points 
• 𝒫 = time intervals 
• 𝑐 = compression rate 
• 𝔓 = aggregated time series 
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Applications 

Coalition Structure Generation 
• Ω = agents 
• 𝒫 = feasible teams 
• 𝑐 = interaction costs 
• 𝔓 = coalition structures 

Time Series Analysis 

Multilevel Geographical Analysis Hierarchical SPP 
• Assumption: 𝒫 forms a hierarchy 
• Result: 𝒪 𝑛  depth-first search 
      [Pons et al., 2011] [Lamarche-Perrin et al., 2014] 

Ordered SPP 
• Assumption: 𝒫 are intervals 
• Result: 𝒪 𝑛2  dynamic programming 
      [Anily et al., 1991] [Jackson et al., 2005] 

Complete SPP 
• Assumption: 𝒫 contains all parts 
• Result: 𝒪 3𝑛  dynamic programming 
      [Yeh, 1986] [Lehmann et al., 2006] 

Special Versions 

Graph SPP 
• Assumption: 𝒫 are connected parts of a graph 
• Result: NP-complete   [Becker et al., 1998] 
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Applications 

Coalition Structure Generation 

Database Optimization 

Time Series Analysis 

Multilevel Geographical Analysis Hierarchical SPP 
• Assumption: 𝒫 forms a hierarchy 
• Result: 𝒪 𝑛  depth-first search 
      [Pons et al., 2011] [Lamarche-Perrin et al., 2014] 

Ordered SPP 
• Assumption: 𝒫 are intervals 
• Result: 𝒪 𝑛2  dynamic programming 
      [Anily et al., 1991] [Jackson et al., 2005] 

Cyclic SPP   [Rothkopf et al., 1998] 

Ordered x Hierarchical SPP   [Dosimont et al., 2014] 

SPP with Size Bounds   [Rothkopf et al., 1998] 

Complete SPP 
• Assumption: 𝒫 contains all parts 
• Result: 𝒪 3𝑛  dynamic programming 
      [Yeh, 1986] [Lehmann et al., 2006] 

Array SPP   [Muthukrishnan et al., 2005] 

Community Detection 

Image Processing 

Combinatorial Auctions 

Distributed System Monitoring 

Load Balancing Problem 

Special Versions 

Graph SPP 
• Assumption: 𝒫 are connected parts of a graph 
• Result: NP-complete   [Becker et al., 1998] 
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• The Ordered SPP has been solved at least 6 times in 30 years: 

      [Chakravarty et al., 1982] [Anily et al., 1991] [Vidal, 1993] [Rothkopf et al., 1998] 

       [Jackson et al., 2005] [Lamarche-Perrin et al., 2013] 

 

• Characterization of tractability based on general algebraic properties 
– Unimodularity of the integer matrix [Minoux, 1987] 

– Perfection of the intersection graph [Müller, 2006] 

→  Too general, and thus too weak in practice! 

 

• Our contribution:  a unified algorithmic framework 
1. A proper understanding of the algebraic structure of the SPP 

2. A generic algorithm exploiting this algebraic structure 

3. Specialized implementations for versions of the SPP 

A Lack of Unified Algorithmic Approaches 
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The Poset of Partitions 

20 



The Poset of Partitions 

Maximal Partition 

Minimal Partition 
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Partition 𝒴 

Algebraic Structure 
The refinement relation defines a 
partial order on the set of partitions: 
 

𝒳 refines 𝒴 
⇔     ∀𝑋 ∈ 𝒳, ∃𝑌 ∈ 𝒴, X ⊂ Y 

ℜ 𝒴 = 𝒳 refining 𝒴  



The Poset of Partitions 

Maximal Partition 

Minimal Partition 
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ℭ 𝒴 = 𝒳 covering 𝒴  

Partition 𝒴 

Algebraic Structure 
The refinement relation defines a 
partial order on the set of partitions: 
 

𝒳 refines 𝒴 
⇔     ∀𝑋 ∈ 𝒳, ∃𝑌 ∈ 𝒴, X ⊂ Y 

 
 
The covering relation is the transitive 
reduction of the refinement relation: 
 

𝒳 is covered by 𝒴 
⇔𝒳 is a “direct” refinement of 𝒴 

ℜ 𝒴 = 𝒳 refining 𝒴  



Branching the Search Space 

For any part 𝑋 ⊂ Ω, the partitions of 𝑋 are either the maximal 
partition 𝑋  or a partition that refines a partition covered by 𝑋 : 
 

𝔓 𝑋 = 𝑋 ∪  ℜ 𝒴

𝒴∈ℭ 𝑋

 

Maximal partition 
Partitions refining a partition 

covered by the maximal partition 
Partitions of 𝑋 

𝑋  
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Branching the Search Space 

For any part 𝑋 ⊂ Ω, the partitions of 𝑋 are either the maximal 
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𝑋  

24 



Branching the Search Space 

For any part 𝑋 ⊂ Ω, the partitions of 𝑋 are either the maximal 
partition 𝑋  or a partition that refines a partition covered by 𝑋 : 
 

𝔓 𝑋 = 𝑋 ∪  ℜ 𝒴

𝒴∈ℭ 𝑋

 

Maximal partition 
Partitions refining a partition 

covered by the maximal partition 
Partitions of 𝑋 

𝒴1
∗ ∈ ℜ 𝒴1  𝒴2

∗ ∈ ℜ 𝒴2  𝒴3
∗ ∈ ℜ 𝒴3  𝒴4

∗ ∈ ℜ 𝒴4  

𝒴1 𝒴2 𝒴3 𝒴4 

𝑋  
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Branching the Search Space 

For any part 𝑋 ⊂ Ω, the partitions of 𝑋 are either the maximal 
partition 𝑋  or a partition that refines a partition covered by 𝑋 : 
 

𝔓 𝑋 = 𝑋 ∪  ℜ 𝒴

𝒴∈ℭ 𝑋

 

Maximal partition 
Partitions refining a partition 

covered by the maximal partition 
Partitions of 𝑋 

𝒴1
∗ ∈ ℜ∗ 𝒴1  𝒴2

∗ ∈ ℜ∗ 𝒴2  𝒴3
∗ ∈ ℜ∗ 𝒴3  𝒴4

∗ ∈ ℜ∗ 𝒴4  

𝒳∗ = arg min
𝒳∈ 𝑋 ,𝒴1

∗,𝒴2
∗,𝒴3
∗,𝒴4
∗ 

 𝑐 𝑋

𝑋∈𝒳

 

New search space 

𝒴1 𝒴2 𝒴3 𝒴4 

𝑋  
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Principle of Optimality 

For any partition 𝒴 of Ω, the union of optimal partitions of the 
parts of 𝒴 is optimal among the refinements of 𝒴: 
 

∀𝑌 ∈ 𝒴,    𝒴𝑌
∗∈ 𝔓∗ 𝑌        ⇒         𝒴𝑌

∗

𝑌∈𝒴

∈ ℜ∗ 𝒴  

Locally-optimal partitions 
of the parts of 𝒴 

Optimal partition among 
the refinements of 𝒴 

𝒴 
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Principle of Optimality 
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Principle of Optimality 

For any partition 𝒴 of Ω, the union of optimal partitions of the 
parts of 𝒴 is optimal among the refinements of 𝒴: 
 

∀𝑌 ∈ 𝒴,    𝒴𝑌
∗∈ 𝔓∗ 𝑌        ⇒         𝒴𝑌

∗

𝑌∈𝒴

∈ ℜ∗ 𝒴  

Locally-optimal partitions 
of the parts of 𝒴 

Optimal partition among 
the refinements of 𝒴 

𝒴 

𝑌1 𝑌2 

𝒴𝑌1
∗ ∈ 𝔓∗ 𝑌1  𝒴𝑌2

∗ ∈ 𝔓∗ 𝑌2  ⇒           𝒴𝑌1
∗ ∪ 𝒴𝑌2

∗ ∈ ℜ∗ 𝒴  29 



Execution of the Generic Algorithm 
Ordered SPP on a Population of Size 4 

Branching 

Recursion 
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Memoization 

Branching 

Recursion 
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Already 
computed 

Already 
computed 

Already 
computed 



Memoization 

Branching 

Recursion 
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Memoization 

Memoization Memoization 



Non-redundant Branching 

Branching 

Recursion 
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Memoization Memoization 

Memoization 

Already 
evaluated 

Already 
evaluated 

Already 
evaluated 

Already 
evaluated 



Non-redundant Branching 

Branching 

Recursion 
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Memoization 

Sufficient 
branching 

Sufficient 
branching 

Sufficient 
branching 



The Generic Algorithm 
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Generic: solve any instance of the SPP 
→ but inefficient for special versions 
 
Designing dedicated implementations: 
 
1. Analysing the generic execution 

 
2. Building appropriate data structures 

 
3. Deriving a specialized algorithm 



Application to the Hierarchical SPP 
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Linear Complexity 
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Population Size 

Data Structure 
• Set of parts: rooted tree 
• Optimal partition: cut of the tree 
• Algorithm: depth-first search 

1. 2. 

3. 



Application to the Ordered SPP 
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Quadratic Complexity 
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Data Structure 
• Set of parts: triangular matrix 
• Optimal partition: array of cuts 
• Algorithm: dynamic programming Memoization 

Sufficient 
branching 

Sufficient 
branching 

Sufficient 
branching 

1. 2. 

3. 



Application to a Multidimensional SPP 
[Dosimont et al., CLUSTER 2014] 

Data Structure 
• Set of parts: rooted tree of triangular matrices 
• Optimal partition: cut of the tree and arrays of cuts 
• Algorithm: depth-first search and dynamic programming 

1. 

2. 

3. 
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Application Perspectives 

Partitioning of Interaction Diagrams   [Mattern, 1989] Partitioning of Graphs 
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Partitioning of Interaction Matrices 
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Time 

Partitioning the State Space of 
Dynamical Systems   [Banisch et al., 2013] 
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