Grenoble, the 14th of October 2013 Thesis from the University of Grenoble

Macroscopic Analysis of Large-scale Systems

Robin Lamarche-Perrin

Reviewers: Bernard Moulin and Éric Fleury **Examiners:** Salima Hassas and Brigitte Plateau **Supervisors:** Yves Demazeau and Jean-Marc Vincent

The Analysis of Large-scale Systems

The Analysis of Large-scale Systems

Analysis of International Relations

Hypothesis: media constitute an adequate instrument to observe the national level

[Grasland et al., 2011]

Geographer

Data from Print Media

The GEOMEDIA Database (ANR CORPUS GUI-AAP-04)

150 newspapers

1,944,000 papers

GEOGRAPHIC INFORMATION 193 countries (UN members)

Data from Print Media

The GEOMEDIA Database (ANR CORPUS GUI-AAP-04)

150 newspapers

1,944,000 papers

GEOGRAPHIC INFORMATION 193 countries (UN members)

TEMPORAL INFORMATION 889 days / 127 weeks (from the 3rd May 2011 to today)

Microscopic Representation of the International System

7

Geographical Representation

	←			5	Spa	2
	USA	Libya	Syria	France	Israel	 Total
2 May	25	12	11	10	4	 142
9 May	14	6	12	12	5	 108
16 May	20	11	12	6	9	 142
23 May	15	9	6	13	5	 120
30 May	10	16	17	9	4	 137
6 June	14	16	16	9	4	 114
13 June	15	14	17	9	6	 119
20 June	17	13	12	12	7	 123
27 June	7	6	7	20	2	103
4 July	12	13	8	10	6	 129
11 July	21	10	10	14	3	 107
18 July	7	3	8	4	5	 61
25 July	16	7	6	13	4	 128
1 Aug.	21	1	9	7	4	 88
Total	423	308	260	248	153	 3520

Observed-to-expected ratio of citation number

8

$$\rho(\pi,t) = \frac{v(\pi,t)}{v^*(\pi,t)} = \frac{v(\pi,t) v(.,.)}{v(\pi,.) v(.,t)}$$

t

Time

Detection of Media Events

Detection of Media Events

Detection of Media Events

Data Aggregation

	←	π_1	π_2	π_3	5	ba	ice
	USA	Libya	Syria	France	Israel		Total
2 May	25	12	11	10	4		142
9 May	14	6	12	12	5		108
16 May	20	11	12	6	9		142
23 May	15	9	6	13	5		120
30 May	10	16	17	9	4		137
6 June	14	16	16	9	4		114
13 June	15	14	17	9	6		119
20 June	17	13	12	12	7		123
27 June	7	6	7	20	2		103
4 July	12	13	8	10	6		129
11 July	21	10	10	14	3		107
18 July	7	3	8	4	5		61
25 July	16	7	6	13	4		128
1 Aug.	21	1	9	7	4		88
Total	423	308	260	248	153		3520

t

Time

Data Aggregation

	←	$\pi_1 \ \pi_2 \ \pi_3$	3	hq	
	USA	Aggregate	Israel		Total
2 May	25	13+11+10	4		142
9 May	14	6+12+12	5		108
16 May	20	11+12+6	9		142
23 May	15	9+6+13	5		120
30 May	10	16+17+9	4		137
6 June	14	16+16+9	4		114
13 June	15	14+17+9	6		119
20 June	17	13+12+12	7		123
27 June	7	6+7+20	2		103
4 July	12	13+8+10	6		129
11 July	21	10+10+14	3		107
18 July	7	3+8+4	5		61
25 July	16	7+6+13	4		128
1 Aug.	21	1+9+7	4		88
Total	423	308+260+248	153		3520

t

Time

P1: The Semantics of Geographical Aggregates

14

P1: The Semantics of Geographical Aggregates

15

20

P3: The Computation of the Best Representations

21

• The number of possible representations exponentially depends on the size of the microscopic representation.

P3: The Computation of the Best Representations

And for Other Dimensions?

And for Other Dimensions?

My Approach

P0 To characterize the aggregation process

ightarrow The algebra of possible partitions

P1 To preserve the system's semantics

 \rightarrow A constrained partitioning method

To aggregate according to several dimension

ightarrow Some constraints expressing the system's topology

P2 To evaluate and compare the representations

 \rightarrow Some measures of complexity and information

To offer several granularity levels

 \rightarrow The optimization of a compromise

P3 To compute the best representations

 \rightarrow A generic algorithm of constrained optimization

2000 4000 6000 8000 10000

Taille de la populatio

My Approach

20	To characterize the aggregation process
-----------	---

\rightarrow The algebra of possible partitions

- To preserve the system's semantics
 - \rightarrow A constrained partitioning method
 - To aggregate according to several dimension
 - \rightarrow Some constraints expressing the system's topology

To evaluate and compare the representations **P2**

 \rightarrow Some measures of complexity and information

To offer several granularity levels

 \rightarrow The optimization of a compromise

To compute the best representations

 \rightarrow A generic algorithm of constrained optimization

P3

P1

The Aggregation Process

Set of Possible Partitions

Algebraic Structure

A partial order on the set of possible partitions

 \rightarrow the refinement relation

My Approach

P0 To characterize the aggregation process \rightarrow The algebra of possible partitions

P1 To preserve the system's semantics

 \rightarrow A constrained partitioning method

To aggregate according to several dimension

 \rightarrow Some constraints expressing the system's topology

P2 To evaluate and compare the representations

ightarrow Some measures of complexity and information

To offer several granularity levels

ightarrow The optimization of a compromise

To compute the best representations

 \rightarrow A generic algorithm of constrained optimization

P3

Problems and Objectives

Constrained Partitioning

At the instances level

[Davidson and Basu, 2007]

Constrained Partitioning

At the instances level [Davidson and Basu, 2007]

At the parts level

[Lamarche-Perrin et al., IAT 2013]

At the partitions level

[Lamarche-Perrin et al., IAT 2013]

Preserving the Neighborhood Relation

The WUTS Hierarchy

[Grasland and Didelon, 2007]

34

The WUTS Hierarchy

[Grasland and Didelon, 2007]

35

Aggregating according to a Hierarchy

Admissible Parts (nodes of the hierarchy)

Admissible Partitions

36

(cuts of the hierarchy)

Aggregating according to a Hierarchy

Admissible Parts (nodes of the hierarchy)

Admissible Partitions

37

(cuts of the hierarchy)

Preserving the Order of Time

Admissible Parts: time intervals

Aggregating according to a Total Order

Admissible Partitions

(interval sequences)

Complexity of Algebraic Structures

My Approach

P0 To characterize the aggregation process \rightarrow The algebra of possible partitions

P1 To preserve the system's semantics

 \rightarrow A constrained partitioning method

To aggregate according to several dimension

ightarrow Some constraints expressing the system's topology

P2 To evaluate and compare the representations

 \rightarrow Some measures of complexity and information

To offer several granularity levels

 \rightarrow The optimization of a compromise

To compute the best representations

ightarrow A generic algorithm of constrained optimization

Objectives and Difficulties

→ TOO COMPLEX TO SCALE-UP

Objectives and Difficulties

Which **admissible partition** is the **best partition** for a particular dataset?

→ GIVES TOO FEW INFORMATION

Objectives and Difficulties

Which **admissible partition** is the **best partition** for a particular dataset?

Complexity and Information

Complexity and Information

Quality Measures

Complexity depends on the **tasks** we want to fulfill and the **description tools** that are available to do so

[Bonabeau and Dessalles, 1997]

Information loss is measured by the KL-divergence between two probabilistic distributions

[Kullback et Leibler, 1951]

Measures Decomposability

Number of represented aggregates: T(X) = |X|

Kullback-Leibler Divergence
$$D(\mathcal{X}) = \sum_{X \in \mathcal{X}} \sum_{x \in X} \frac{v(x)}{v(\Omega)} \log_2 \left(\frac{v(x) |X|}{v(X)} \right)$$

Additive Decomposability: The quality of a partition is the sum of the qualities of its parts [Jackson *et al.*, 2005] [Csiszár, 2008]

Optimizing the Partition Qualities

Optimizing the Partition Qualities

Optimizing the Partition Qualities

My Approach

P0To characterize the aggregation process \rightarrow The algebra of possible partitions

- P1 To preserve the system's semantics → A constrained partitioning method To aggregate according to several dimension → Some constraints expressing the system's topology
- P2 To evaluate and compare the representations

 → Some measures of complexity and information
 To offer several granularity levels
 → The optimization of a compromise
- **P3** To compute the best representations \rightarrow A generic algorithm of constrained optimization

Objectives

Set of admissible partitions

Quality Measures

$$\Delta T(\mathcal{X}) = |\Omega| - |\mathcal{X}|$$
$$D(\mathcal{X}) = \sum_{X \in \mathcal{X}} \sum_{x \in \mathcal{X}} \frac{v(x)}{v(\Omega)} \log_2\left(\frac{v(x) |X|}{v(X)}\right)$$
$$CQL_{\alpha} = \alpha \frac{\Delta T}{\Delta T_{\max}} - (1 - \alpha) \frac{D}{D_{\max}}$$

The Admissible Optimal Partitions Problem: Which admissible partitions optimize a given compromise of quality?

 \rightarrow A well-known constrained optimization problem

Exponential Algorithmic Complexity

Non-constrained Set

Ordered Set

Number of admissible partitions

(*n* = size of the system)

$$\Theta(e^{n\log n})$$
 $\Theta(2^n)$ $\Theta(c^n)$

[Berend and Tassa, 2010]

Toward an Efficient Algorithm

• **Classical clustering techniques** uses some heuristics to find local optima [Halkidi *et al.*, 2001]

In our case:

- The admissibility constraints allow to reduce the complexity of the optimization problem
- The algebraic properties of the quality measures allow to efficiently compare the partitions

ightarrow We look for the global optima

Idea of the Algorithm

Decomposition according to the refinement relation

Recursion according to the decomposability of measures

DIVIDE...

...AND CONQUER

[Lamarche-Perrin et al., IAT 2013]

Execution of the Algorithm

Execution of the Algorithm

Complexity of the Algorithm

The algorithm spatial and temporal complexity directly depend on the algebraic properties of the set of admissible partitions

the more constrained, the less complex

According to a total order

EXPERIMENTS AND RESULTS

[Giraud, Grasland, Lamarche-Perrin et al., ECTQG 2013]

The Syrian civil war according to 4 newspapers

[Giraud, Grasland, Lamarche-Perrin et al., ECTQG 2013]

Characterizing Different Datasets

Aggregation of Execution Traces

[Lamarche-Perrin, Schnorr et al., TSI 2013]

Aggregation of Execution Traces

[Pagano, Dosimont et al., 2013]

OUTCOMES AND PERSPECTIVES
Summary of the Contributions

P1 Algebraic structures that express the system's semantic properties

P2 A compromise of quality to generate multi-resolution representations

$$CQL_{\alpha} = \alpha \frac{\Delta T}{\Delta T_{\max}} - (1 - \alpha) \frac{D}{D_{\max}}$$

P2 Graphs of quality to choose the representations granularity

P3 A generic aggregation algorithm with **polynomial complexity**

Summary of the Hypotheses

Microscopic observation tools

PO Aggregation according to partitions

P1 Hierarchical or ordered systems

P2 Decomposable quality measures

Non-decomposable Measures

- The recursive approach is no longer possible
- The quality of a part cannot be defined

→ Do non-decomposable quality measures have a meaning to evaluate the aggregation process?

Non-disjoint and Non-covering Parts

→ Effect on the algorithmic complexity?

Macroscopic Observation

Macroscopic Observation

THANKS FOR YOUR ATTENTION

« Aujourd'hui nous sommes confrontés à un autre infini : l'infiniment complexe. Mais cette fois, plus d'instrument. »

Joël de Rosnay, Le macroscope, 1975

LIST OF PUBLICATIONS

Peer-reviewed Journals (being accepted)

Lamarche-Perrin, Demazeau et Vincent. Building the Best Macroscopic Representations of Complex Multi-Agent Systems. *Transaction on Computational Collective Intelligence (TCCI)*, 2014.

Lamarche-Perrin, Schnorr, Vincent et Demazeau. Agrégation de traces pour la visualisation de grands systèmes distribués. Technique et Science Informatiques (TSI), 2014.

International Peer-reviewed Conferences with Proceedings

Lamarche-Perrin, Demazeau et Vincent. **The Best-partitions Problem: How to Build Meaningful Aggregations.** *Intelligent Agent Technology (IAT)*, Atlanta, 2013.

Giraud, Grasland, Lamarche-Perrin, Demazeau et Vincent. **Identification of International Media Events by Spatial and Temporal Aggregation of RSS Flows of Newspapers.** *European Colloquium in Theoretical and Quantitative Geography (ECTQG)*, Dourdan, 2013.

Lamarche-Perrin, Demazeau and Vincent. How to Build the Best Macroscopic Description of your Multi-agent System? *Practical Applications of Agents and Multi-Agent Systems (PAAMS)*, Salamanca, 2013.

French Peer-reviewed Conferences with Proceedings

Lamarche-Perrin, Demazeau et Vincent. **Organisation, agrégation et visualisation d'informations médiatiques.** *Colloque annuel du Collège des Sciences du Territoire*, Paris, 2011.

Lamarche-Perrin, Demazeau et Vincent. **Observation macroscopique et émergence dans les SMA de très grande taille.** *Journées Francophones des Systèmes Multi-Agents (JFSMA)*, Valenciennes, 2011.

Application Perspectives

Multi-agent Systems

[Lamarche-Perrin et al., JFSMA 2011]

Sensor Networks

Other Topological Structures

Find the complexity classes that are associated to other dimensions, other semantics, other topologies, *etc.*

Set	Admissible Parts	Admissible Partitions	Temporal Complexity	Spatial Complexity
Non-contrained	$\Theta(2^n)$	$\Theta(e^{n\log n})$	$\Theta(3^n)$	$\Theta(2^n)$
Ordered	$\Theta(n^2)$	$\Theta(2^n)$	$\Theta(n^2)$	$\Theta(n^2)$
Hierarchical	0(n)	$O(c^n)$	0(n)	0(n)
Other topologies	?	?	?	?

Multidimensional Aggregation

Microscopic Representation

Aggregated Representation

Aggregation of Causal Structures

